elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification

Mou, LiChao und Zhu, Xiao Xiang (2020) Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 58 (1), Seiten 110-122. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2933609. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
12MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/8851395

Kurzfassung

Over the past few years, hyperspectral image classification using convolutional neural networks (CNNs) has progressed significantly. In spite of their effectiveness, given that hyperspectral images are of high dimensionality, CNNs can be hindered by their modeling of all spectral bands with the same weight, as probably not all bands are equally informative and predictive. Moreover, the usage of useless spectral bands in CNNs may even introduce noises and weaken the performance of networks. For the sake of boosting the representational capacity of CNNs for spectral-spatial hyperspectral data classification, in this work, we improve networks by discriminating the significance of different spectral bands. We design a network unit, which is termed as the spectral attention module, that makes use of a gating mechanism to adaptively recalibrate spectral bands by selectively emphasizing informative bands and suppressing less useful ones. We theoretically analyze and discuss why such a spectral attention module helps in a CNN for hyperspectral image classification. We demonstrate using extensive experiments that in comparison with state-of-the-art approaches, the spectral attention module-based convolutional networks are able to offer competitive results. Furthermore, this work sheds light on how a CNN interacts with spectral bands for the purpose of classification.

elib-URL des Eintrags:https://elib.dlr.de/134872/
Dokumentart:Zeitschriftenbeitrag
Titel:Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2020
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:58
DOI:10.1109/TGRS.2019.2933609
Seitenbereich:Seiten 110-122
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Hyperspectral imaging, Logic gates, Task analysis, Convolution, Support vector machines
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Li, Qingyu
Hinterlegt am:14 Mai 2020 10:39
Letzte Änderung:24 Okt 2023 12:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.