Mou, LiChao und Zhu, Xiao Xiang (2020) Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 58 (1), Seiten 110-122. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2019.2933609. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
12MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/8851395
Kurzfassung
Over the past few years, hyperspectral image classification using convolutional neural networks (CNNs) has progressed significantly. In spite of their effectiveness, given that hyperspectral images are of high dimensionality, CNNs can be hindered by their modeling of all spectral bands with the same weight, as probably not all bands are equally informative and predictive. Moreover, the usage of useless spectral bands in CNNs may even introduce noises and weaken the performance of networks. For the sake of boosting the representational capacity of CNNs for spectral-spatial hyperspectral data classification, in this work, we improve networks by discriminating the significance of different spectral bands. We design a network unit, which is termed as the spectral attention module, that makes use of a gating mechanism to adaptively recalibrate spectral bands by selectively emphasizing informative bands and suppressing less useful ones. We theoretically analyze and discuss why such a spectral attention module helps in a CNN for hyperspectral image classification. We demonstrate using extensive experiments that in comparison with state-of-the-art approaches, the spectral attention module-based convolutional networks are able to offer competitive results. Furthermore, this work sheds light on how a CNN interacts with spectral bands for the purpose of classification.
elib-URL des Eintrags: | https://elib.dlr.de/134872/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Januar 2020 | ||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 58 | ||||||||||||
DOI: | 10.1109/TGRS.2019.2933609 | ||||||||||||
Seitenbereich: | Seiten 110-122 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 0196-2892 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Hyperspectral imaging, Logic gates, Task analysis, Convolution, Support vector machines | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Li, Qingyu | ||||||||||||
Hinterlegt am: | 14 Mai 2020 10:39 | ||||||||||||
Letzte Änderung: | 24 Okt 2023 12:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags