Droin, Ariane and Wurm, Michael and Sulzer, Wolfgang (2020) Semantic labelling of building types A comparison of two approaches using Random Forest and Deep Learning. In: Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., pp. 527-538. Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V.. 40. Wissenschaftlich-TechnischeJahrestagung der DGPF, 2020-03-04 - 2020-03-06, Stuttgart, Deutschland. ISSN ISSN 0942-2870.
PDF
- Only accessible within DLR
1MB |
Official URL: https://www.dgpf.de/src/tagung/jt2020/proceedings/proceedings/papers/76_KKNP_DGPF2020_Droin_et_al.pdf
Abstract
In the context of sustainable planning, knowledge about building type is crucial. Yet, this information is scarce and mostly inhomogeneous. In regard to the big-data era, two approaches for building type classification are presented based on different data basis. The first approach shows semantic classification of building footprints using a set of features (simple geometric, morphological and topological features) and the machine learning algorithm Random Forest. Very high accuracies for the federal states of Germany could be achieved with Kappa Coefficients between 0.87 and 0.98. The second framework presents the possibility to conduct semantic labelling of aerial images using Fully Convolutional Neural Networks. The gained accuracy in this case is a Kappa of 0.73 for the federal state of Berlin.
Item URL in elib: | https://elib.dlr.de/134772/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Semantic labelling of building types A comparison of two approaches using Random Forest and Deep Learning | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2020 | ||||||||||||||||
Journal or Publication Title: | Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V. | ||||||||||||||||
Refereed publication: | No | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 527-538 | ||||||||||||||||
Editors: |
| ||||||||||||||||
Publisher: | Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V. | ||||||||||||||||
ISSN: | ISSN 0942-2870 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Machine Learning, Semantic Labelling, Deep Learning, LoD1 | ||||||||||||||||
Event Title: | 40. Wissenschaftlich-TechnischeJahrestagung der DGPF | ||||||||||||||||
Event Location: | Stuttgart, Deutschland | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 4 March 2020 | ||||||||||||||||
Event End Date: | 6 March 2020 | ||||||||||||||||
Organizer: | Deutsche Gesellschaft für Photogrammetrie und Fernerkundung | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||
Deposited By: | Droin, Ariane | ||||||||||||||||
Deposited On: | 22 Jun 2020 08:11 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:37 |
Repository Staff Only: item control page