Hauschild, André (2019) GNSS Yaw Attitude estimation: Results for the Japanese Quasi‐Zenith Satellite System block‐II satellites using single‐ or triple‐frequency signals from two antennas. Navigation, Journal of the Institute of Navigation. Wiley. doi: 10.1002/navi.333. ISSN 0028-1522.
PDF
- Published version
4MB |
Abstract
The Japanese Quasi-Zenith Satellite System (QZSS) constellation has added three new Block-II satellites. Two of these satellites have been launched into inclined geosynchronous orbits and one into a geostationary orbit. All three spacecraft broadcast ranging signals on GPS L1, L2 and L5 frequencies from their main L-band antenna together with the centimeter-level augmentation service (CLAS) signal L6 (formerly LEX) on the Galileo E6 frequency band. Like on the Block-I satellite, a sub-meter level augmentation service (SLAS) signal is transmitted from a separate antenna on the GPS L1 frequency. A new feature is the addition of the position technology verification service (PTV) Signal on the L5 frequency from yet another antenna. After determination of the antenna baseline vector, differential processing of measurements from different observations allows for an estimation of the satellite’s yaw attitude. The L1 SLAS and the L1 C/A-code signals have been used to estimate the yaw attitude with an accuracy of less than 1°. Differential carrier-phase center variation maps have been derived for this signal combination. Yaw estimation results are presented for periods of special interest, for example 360° yaw rotations, orbit correction maneuvers and the satellite’s eclipse period, where a special pseudo yaw steering attitude mode is applied. The second part of the paper introduces a new concept using triple-frequency signals from two different antennas for attitude determination. This method is demonstrated with QZSS measurements, but is also applicable to other satellite navigation system, like the enhanced GLONASS-M satellites with L3 signal capabilities.
Item URL in elib: | https://elib.dlr.de/134286/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||
Title: | GNSS Yaw Attitude estimation: Results for the Japanese Quasi‐Zenith Satellite System block‐II satellites using single‐ or triple‐frequency signals from two antennas | ||||||||
Authors: |
| ||||||||
Date: | 2019 | ||||||||
Journal or Publication Title: | Navigation, Journal of the Institute of Navigation | ||||||||
Refereed publication: | Yes | ||||||||
Open Access: | Yes | ||||||||
Gold Open Access: | No | ||||||||
In SCOPUS: | Yes | ||||||||
In ISI Web of Science: | Yes | ||||||||
DOI: | 10.1002/navi.333 | ||||||||
Publisher: | Wiley | ||||||||
ISSN: | 0028-1522 | ||||||||
Status: | Published | ||||||||
Keywords: | QZSS, Attitude | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Space System Technology | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R SY - Space System Technology | ||||||||
DLR - Research theme (Project): | R - Vorhaben Infrastruktur und Unterstützung für Raumflugbetrieb (old) | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Space Operations and Astronaut Training > Space Flight Technology | ||||||||
Deposited By: | Hauschild, André | ||||||||
Deposited On: | 10 Mar 2020 10:43 | ||||||||
Last Modified: | 30 Oct 2023 14:26 |
Repository Staff Only: item control page