Kranz, W. Till and Frahsa, Fabian and Zippelius, Annette and Fuchs, Matthias and Sperl, Matthias (2020) Integration through transients for inelastic hard sphere fluids. Physical Review Fluids, 5, 024305. American Physical Society. doi: 10.1103/PhysRevFluids.5.024305. ISSN 2469-990X.
Full text not available from this repository.
Official URL: https://link.aps.org/doi/10.1103/PhysRevFluids.5.024305
Abstract
We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalize the Integration Through Transients formalism to a fluid of dissipative, randomly driven granular particles. The stress relaxation function is computed approximately within a mode-coupling theory—based on the physical picture that relaxation of shear is dominated by slow structural relaxation, as the glass transition is approached. The transient build-up of stress in steady shear is thus traced back to transient density correlations which are computed self-consistently within mode-coupling theory. The glass transition is signaled by the appearance of a yield stress and a divergence of the Newtonian viscosity, characterizing linear response. For shear rates comparable to the structural relaxation time, the stress becomes independent of shear rate and we observe shear thinning, while for the largest shear rates Bagnold scaling, i.e., a quadratic increase of shear stress with shear rate, is recovered. The rheological properties are qualitatively similar for all values of ɛ, the coefficient of restitution; however, the magnitude of the stress as well as the range of shear thinning and thickening show significant dependence on the inelasticity.
Item URL in elib: | https://elib.dlr.de/134282/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Integration through transients for inelastic hard sphere fluids | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 28 February 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | Physical Review Fluids | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 5 | ||||||||||||||||||||||||
DOI: | 10.1103/PhysRevFluids.5.024305 | ||||||||||||||||||||||||
Page Range: | 024305 | ||||||||||||||||||||||||
Publisher: | American Physical Society | ||||||||||||||||||||||||
ISSN: | 2469-990X | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | integration through transients, rheology, granular media | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Research under Space Conditions | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R FR - Research under Space Conditions | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Model systems | ||||||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Materials Physics in Space | ||||||||||||||||||||||||
Deposited By: | Sperl, Matthias | ||||||||||||||||||||||||
Deposited On: | 06 Mar 2020 12:55 | ||||||||||||||||||||||||
Last Modified: | 06 Mar 2020 12:55 |
Repository Staff Only: item control page