Qiu, Chunping und Mou, LiChao und Schmitt, Michael und Zhu, Xiao Xiang (2020) Fusing Multi-seasonal Sentinel-2 Imagery for Urban Land Cover Classification with Multibranch Residual Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 17 (10), Seiten 1787-1791. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2019.2953497. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8951229
Kurzfassung
Exploiting multitemporal Sentinel-2 images for urban land cover classification has become an important research topic, since these images have become globally available at relatively fine temporal resolution, thus offering great potential for large-scale land cover mapping. However, appropriate exploitation of the images needs to address problems such as cloud cover inherent to optical satellite imagery. To this end, we propose a simple yet effective decision-level fusion approach for urban land cover prediction from multiseasonal Sentinel-2 images, using the state-of-the-art residual convolutional neural networks (ResNet). We extensively tested the approach in a cross-validation manner over a seven-city study area in central Europe. Both quantitative and qualitative results demonstrated the superior performance of the proposed fusion approach over several baseline approaches, including observation- and feature-level fusion.
elib-URL des Eintrags: | https://elib.dlr.de/134124/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Fusing Multi-seasonal Sentinel-2 Imagery for Urban Land Cover Classification with Multibranch Residual Convolutional Neural Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 17 | ||||||||||||||||||||
DOI: | 10.1109/LGRS.2019.2953497 | ||||||||||||||||||||
Seitenbereich: | Seiten 1787-1791 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Classification, fusion, long short-term memory (LSTM), multitemporal, nonlocal, residual convolutional neural network (ResNet), Sentinel-2, urban land cover. | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Mou, LiChao | ||||||||||||||||||||
Hinterlegt am: | 18 Feb 2020 14:27 | ||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags