Hua, Yuansheng und Mou, LiChao und Zhu, Xiao Xiang (2019) Label Relation Inference for Multi-Label Aerial Image Classification. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Seiten 5244-5247. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898934.
PDF
527kB |
Offizielle URL: https://ieeexplore.ieee.org/document/8898934
Kurzfassung
Multi-label aerial image classification is a challenging visual task and obtaining increasing attention recently. Most of the existing methods resort to training independent classifier for each label, while underlying label correlations are not fully exploited while making predictions. To this end, we propose an innovative inference network, which takes advantage of pairwise label relations to infer multiple object labels of a high-resolution aerial image. Specifically, we first employ a feature extraction module to extract high-level feature representations of an aerial image, and then, feed them into a relational inference module to predict the presence of each object label. We evaluate our network on the UCM multilabel dataset and experiment with various popular convolutional neural networks (CNNs) as the backbone of the feature extraction module. Experimental results demonstrate that the proposed network behaves superiorly in comparison with other existing methods.
elib-URL des Eintrags: | https://elib.dlr.de/134105/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Label Relation Inference for Multi-Label Aerial Image Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | August 2019 | ||||||||||||||||
Erschienen in: | IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2019.8898934 | ||||||||||||||||
Seitenbereich: | Seiten 5244-5247 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | label relation, relational inference network, multi-label classification, CNN | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 13 Feb 2020 10:08 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags