Hua, Yuansheng und Mou, LiChao und Zhu, Xiao Xiang (2018) LahNet: A Convolutional Neural Network Fusing Low- and High-Level Features for Aerial Scene Classification. In: 2018 International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 4728-4731. IGARSS 2018, 2018-07-23 - 2018-07-27, Valencia, Spain. doi: 10.1109/IGARSS.2018.8519576.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8519576
Kurzfassung
In this paper, we proposed an innovative end-to-end convolutional neural network (CNN), which is trained to learn how to fuse multi-level features for aerial scene classification. Instead of using only coarse semantic features as conventional CNNs, we resort to first hierarchically extracting dense highlevel features and then element-wise fusing them with lowlevel features to build a comprehensive feature representation, which contains not only high-level semantic information but also fine-grained low-level details, for scene classification. The network is evaluated on two broadly used aerial scene datasets, UCM and AID. The experimental results indicate that the proposed LAHNet performs superiorly compared to the existing benchmark methods. Furthermore, visualization of the fused features presents an intuitive illustration of the remarkable improvement.
elib-URL des Eintrags: | https://elib.dlr.de/134066/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | LahNet: A Convolutional Neural Network Fusing Low- and High-Level Features for Aerial Scene Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2018 | ||||||||||||||||
Erschienen in: | 2018 International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2018.8519576 | ||||||||||||||||
Seitenbereich: | Seiten 4728-4731 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | convolutional neural network (CNN), feature fusion, aerial scene classification | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2018 | ||||||||||||||||
Veranstaltungsort: | Valencia, Spain | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2018 | ||||||||||||||||
Veranstaltungsende: | 27 Juli 2018 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 11 Feb 2020 09:39 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags