elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Computation of the Stability Limit of Nonlinear Bladerow Flutter with a Fully Coupled Frequency Domain FSI Solver

Berthold, Christian und Gross, Johann und Frey, Christian und Krack, Malte (2019) Computation of the Stability Limit of Nonlinear Bladerow Flutter with a Fully Coupled Frequency Domain FSI Solver. In: Proceedings of 8th GACM Colloquium on Computational Mechanics, Seiten 311-314. kassel university press. 8th GACM Colloquium on Computational Mechanics, 2019-08-28 - 2019-08-30, Kassel. ISSN 978-3-7376-5093-9.

[img] PDF
117MB

Offizielle URL: https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9

Kurzfassung

To guarantee a safe operation of turbomachinery components engineers need to consider the aeroe- lastic behavior of the mechanical design. Due to increasing demands with respect to e�ciency and fuel consumption components need to be further optimized. However conventional computational analysis meth- ods for aeroelasticity which are commonly used in industry during the design phase have uncertainties since they are often based on linearization or neglect interactions between physical nonlinear e�ects in the solid and �uid domain. Thus large safety margins for conventional methods need to be considered resulting in restrictive design guidelines. Furthermore the nonlinear behavior of blade vibrations and the interaction with the surrounding nonlinear �ow is only rarely analyzed and therefore not yet fully understood. Time accurate methods can deliver higher accuracy but the computational costs are prohibitive for the industrial design pro- cess. In this study a fully coupled �uid-structure interaction (FSI) solver in the frequency domain is presented to provide a computationally e�cient simulation tool which is able to consider nonlinear solid and �uid e�ects of blade limit cycle oscillations (LCOs) in turbo engines. It can compute stable LCOs as well as unstable LCOs (stability limit) which can occur e.g. due to dry nonlinear friction in shrouded blades and is based on the Harmonic Balance method. The fourier components of the blade vibration and the frequency are passed to the �ow solver and the aerodynamic forces are returned to the strucure solver. Because the frequency of self excited vibrations is not known a priori the FSI solver considers the frequency as part of the sought solution. Furthermore a linearization of the aerodynamic forces inside the structure solver is introduced to improve the convergence of the coupled solver and countermeasures are implemented to prevent the solver from converging to the trivial solution (zero amplitude). To further reduce the computational costs the structural model is reduced with the Craig-Bampton approach. During the reduction the degrees of freedom in the solid contact regions of the bladerow are retained to model dry friction. To initialize the solver the energy method is extended to approximately determine the nonlinear behavior with a one-way coupling approach. The novel method is applied to a bladerow which is aerodynamically stable for small vibration amplitudes. With in- creasing amplitude the modeshape as well as the frequency change due to nonlinear friction in the joints of the shrouded rotor. This has an e�ect on the aerodynamic response and for large amplitudes the oscillations are aerodynamically unstable. The coupled solver is able to determine the limit of stability and the frequency of the coupled problem while conventional energy methods are not able to detect a stability boundary at all.

elib-URL des Eintrags:https://elib.dlr.de/134032/
Dokumentart:Konferenzbeitrag (Programmrede)
Titel:Computation of the Stability Limit of Nonlinear Bladerow Flutter with a Fully Coupled Frequency Domain FSI Solver
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Berthold, ChristianChristian.Berthold (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gross, JohannNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Frey, ChristianChristian.Frey (at) dlr.dehttps://orcid.org/0000-0003-0496-9225NICHT SPEZIFIZIERT
Krack, MalteNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2019
Erschienen in:Proceedings of 8th GACM Colloquium on Computational Mechanics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 311-314
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Gleim, TobiasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lange, StephanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:kassel university press
ISSN:978-3-7376-5093-9
Status:veröffentlicht
Stichwörter:fluid-structure interaction, harmonic balance, flutter, aeroelasticity, shrouded turbine, dry friction
Veranstaltungstitel:8th GACM Colloquium on Computational Mechanics
Veranstaltungsort:Kassel
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:28 August 2019
Veranstaltungsende:30 August 2019
HGF - Forschungsbereich:Energie
HGF - Programm:Energieeffizienz, Materialien und Ressourcen
HGF - Programmthema:Effiziente und flexible Kraftwerksanlagen
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E VS - Verbrennungssysteme
DLR - Teilgebiet (Projekt, Vorhaben):E - Gasturbine (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Numerische Methoden
Hinterlegt von: Berthold, Christian
Hinterlegt am:10 Feb 2020 08:01
Letzte Änderung:24 Apr 2024 20:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.