elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Poisson's Summation Formula in Radar Imaging

Fischer, Jens und Rommel, Tobias und Stens, Rudolf (2021) Poisson's Summation Formula in Radar Imaging. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 424-429. VDE Verlag. European Conference on Synthetic Aperture Radar (EUSAR), 2021-03-29 - 2021-04-01, Leipzig (virtually), Germany. ISSN 2197-4403.

[img] PDF
1MB

Kurzfassung

Poisson’s Summation Formula (PSF) has numerous applications, not only in radar imaging. It is the bridge between continuous (infinite integrals) and discrete settings (finite sums) and, hence, links the Fourier transform, Fourier series, the Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT) to one another. Most importantly, however, is the fact that Poisson’s Summation Formula is the actual core statement hidden in any sampling theorem. In this paper, we show that two operations, discretization and periodization, are needed to come from infinite integrals to finite sums. These operations are moreover involved in any imaging process, in particular, in radar imaging. We use two operations, comb and rep, to better understand Poisson’s Summation Formula, both introduced by Woodward who is also known for introducing the sinc function and Woodward’s ambiguity function. With these operations applied to functions it can be shown that "sampling a function with 1/T" means to "periodize its Fourier transform with T" and, vice versa, "periodizing a function with T" means to "sample its Fourier transform with 1/T". This simple statement turns out to be both, the sampling theorem and Poisson’s summation formula. However, there are functions which cannot be sampled and functions which cannot be periodized. Constant functions or constantly growing functions, for example, can be sampled but cannot be periodized. Vice versa, a Dirac delta can be periodized, it yields a Dirac comb, but cannot be sampled. So, another outcome in this paper is an easy-to-apply rule for distinguishing those functions which can be sampled or periodized or sampled and periodized and those which cannot.

elib-URL des Eintrags:https://elib.dlr.de/133956/
Dokumentart:Konferenzbeitrag (Vortrag, Poster)
Titel:Poisson's Summation Formula in Radar Imaging
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fischer, JensJens.Fischer (at) dlr.dehttps://orcid.org/0000-0002-8987-0859NICHT SPEZIFIZIERT
Rommel, TobiasTobias.Rommel (at) dlr.dehttps://orcid.org/0000-0003-1864-7585NICHT SPEZIFIZIERT
Stens, Rudolfstens (at) matha.rwth-aachen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2021
Erschienen in:Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Seitenbereich:Seiten 424-429
Verlag:VDE Verlag
ISSN:2197-4403
Status:veröffentlicht
Stichwörter:Poisson Summation Formula, PSF, radar imaging, synthetic aperture radar, SAR
Veranstaltungstitel:European Conference on Synthetic Aperture Radar (EUSAR)
Veranstaltungsort:Leipzig (virtually), Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 März 2021
Veranstaltungsende:1 April 2021
Veranstalter :VDE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Fischer, Jens
Hinterlegt am:03 Feb 2020 07:41
Letzte Änderung:24 Apr 2024 20:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.