elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Statistical Regularization for Enhanced TomoSAR Imaging

Martin del Campo Becerra, Gustavo und Nannini, Matteo und Reigber, Andreas (2020) Statistical Regularization for Enhanced TomoSAR Imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.2970595. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
3MB

Offizielle URL: http://www.grss-ieee.org/publication-category/jstars/

Kurzfassung

One of the main topics in synthetic aperture radar (SAR) tomography (TomoSAR) is the estimation of the vertical structures’ location, which scatter the field back towards the sensor, constrained to a reduced number of passes. Moreover, the introduction of artifacts and the increase of the ambiguity levels due to irregular sampling, consequence of non-uniform acquisition constellations, complicate the accurate estimation of the source parameters. Pursuing the alleviation of such drawbacks, the use of statistical regularization approaches, based on the maximum-likelihood (ML) estimation theory, has been successfully demonstrated in the previous related studies. However, these techniques are constrained to the assumption that the probability density function (pdf) of the observed data is Gaussian. In this paper, in order to solve the ill-posed non-linear TomoSAR inverse problem, we relax this assumption and apply the weighted covariance fitting (WCF) criterion instead. The latter alleviates the previously mentioned drawbacks, and retrieves a power spectrum pattern (PSP) with an outline more similar to the expected one, i.e., recovered using matched spatial filtering (MSF) with a higher number of tracks. First, we present the mathematical background of the related regularization methods, adapted to solve the TomoSAR inverse problem, from which we derive our novel technique, named WISE (WCF-based Iterative Spectral Estimator). Then, the differences and similarities between the addressed regularization approaches are discussed, besides their main advantages and disadvantages. Finally, the implementation details of WISE are treated, along with simulated examples and experimental results gotten from a forested test site.

elib-URL des Eintrags:https://elib.dlr.de/133950/
Dokumentart:Zeitschriftenbeitrag
Titel:Statistical Regularization for Enhanced TomoSAR Imaging
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Martin del Campo Becerra, GustavoGustavo.MartindelCampoBecerra (at) dlr.dehttps://orcid.org/0000-0003-1642-6068NICHT SPEZIFIZIERT
Nannini, MatteoMatteo.Nannini (at) dlr.dehttps://orcid.org/0000-0003-3523-9639NICHT SPEZIFIZIERT
Reigber, AndreasAndreas.Reigber (at) dlr.dehttps://orcid.org/0000-0002-2118-5046NICHT SPEZIFIZIERT
Datum:25 Februar 2020
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2020.2970595
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Maximum-likelihood (ML), power spectrum pattern (PSP), spectral analysis (SA), synthetic aperture radar (SAR) tomography (TomoSAR), weighted covariance fitting (WCF).
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Martin del Campo Becerra, Gustavo
Hinterlegt am:03 Feb 2020 07:38
Letzte Änderung:24 Okt 2023 12:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.