Martin del Campo Becerra, Gustavo und Nannini, Matteo und Reigber, Andreas (2020) Statistical Regularization for Enhanced TomoSAR Imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.2970595. ISSN 1939-1404.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
3MB |
Offizielle URL: http://www.grss-ieee.org/publication-category/jstars/
Kurzfassung
One of the main topics in synthetic aperture radar (SAR) tomography (TomoSAR) is the estimation of the vertical structures’ location, which scatter the field back towards the sensor, constrained to a reduced number of passes. Moreover, the introduction of artifacts and the increase of the ambiguity levels due to irregular sampling, consequence of non-uniform acquisition constellations, complicate the accurate estimation of the source parameters. Pursuing the alleviation of such drawbacks, the use of statistical regularization approaches, based on the maximum-likelihood (ML) estimation theory, has been successfully demonstrated in the previous related studies. However, these techniques are constrained to the assumption that the probability density function (pdf) of the observed data is Gaussian. In this paper, in order to solve the ill-posed non-linear TomoSAR inverse problem, we relax this assumption and apply the weighted covariance fitting (WCF) criterion instead. The latter alleviates the previously mentioned drawbacks, and retrieves a power spectrum pattern (PSP) with an outline more similar to the expected one, i.e., recovered using matched spatial filtering (MSF) with a higher number of tracks. First, we present the mathematical background of the related regularization methods, adapted to solve the TomoSAR inverse problem, from which we derive our novel technique, named WISE (WCF-based Iterative Spectral Estimator). Then, the differences and similarities between the addressed regularization approaches are discussed, besides their main advantages and disadvantages. Finally, the implementation details of WISE are treated, along with simulated examples and experimental results gotten from a forested test site.
elib-URL des Eintrags: | https://elib.dlr.de/133950/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Statistical Regularization for Enhanced TomoSAR Imaging | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 25 Februar 2020 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/JSTARS.2020.2970595 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Maximum-likelihood (ML), power spectrum pattern (PSP), spectral analysis (SA), synthetic aperture radar (SAR) tomography (TomoSAR), weighted covariance fitting (WCF). | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||
Hinterlegt von: | Martin del Campo Becerra, Gustavo | ||||||||||||||||
Hinterlegt am: | 03 Feb 2020 07:38 | ||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags