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Abstract—One of the main topics in synthetic aperture radar 
(SAR) tomography (TomoSAR) is the estimation of the vertical 
structures’ location, which scatter the field back towards the 
sensor, constrained to a reduced number of passes. Moreover, the 
introduction of artifacts and the increase of the ambiguity levels 
due to irregular sampling, consequence of non-uniform 
acquisition constellations, complicate the accurate estimation of 
the source parameters. Pursuing the alleviation of such 
drawbacks, the use of statistical regularization approaches, based 
on the maximum-likelihood (ML) estimation theory, has been 
successfully demonstrated in the previous related studies. 
However, these techniques are constrained to the assumption that 
the probability density function (pdf) of the observed data is 
Gaussian. In this paper, in order to solve the ill-posed non-linear 
TomoSAR inverse problem, we relax this assumption and apply 
the weighted covariance fitting (WCF) criterion instead. The 
latter alleviates the previously mentioned drawbacks, and 
retrieves a power spectrum pattern (PSP) with an outline more 
similar to the expected one, i.e., recovered using matched spatial 
filtering (MSF) with a higher number of tracks. First, we present 
the mathematical background of the related regularization 
methods, adapted to solve the TomoSAR inverse problem, from 
which we derive our novel technique, named WISE (WCF-based 
Iterative Spectral Estimator). Then, the differences and 
similarities between the addressed regularization approaches are 
discussed, besides their main advantages and disadvantages. 
Finally, the implementation details of WISE are treated, along 
with simulated examples and experimental results gotten from a 
forested test site.   

  
Index Terms—Maximum-likelihood (ML), power spectrum 

pattern (PSP), spectral analysis (SA), synthetic aperture radar 
(SAR) tomography (TomoSAR), weighted covariance fitting 
(WCF). 

LIST OF ACRONYMS 
BMR Bayes minimum risk 
CLS Constrained least squares 
CS Compressed sensing 
DOA Direction of arrival 
ESPRIT Estimation of signal parameters via rotational 

invariance techniques 
IAA-ML Iterative adaptive approach for ML 
LS Least squares 
MAP Maximum a posteriori probability 
MARIA ML-inspired adaptive robust iterative approach 
ML Maximum-likelihood 
MSE Mean square error 
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MSF Matched spatial filter 
MUSIC Multiple signal classification 
PLOS Perpendicular to the line-of-sight 
POCS Projector onto convex solution sets 
PSP Power spectrum pattern 
SA Spectral analysis 
SAR Synthetic aperture radar 
SM Scattering mechanism 
SPICE Semiparametric/sparse iterative covariance-based 
 estimation  
TomoSAR SAR tomography 
WAVAB WDT-refined virtual adaptive beamforming 
WDT Wavelet domain thresholding 
WCLS Weighted CLS 
WCF Weighted covariance fitting 
WISE WCF-based iterative spectral estimator 

GLOSSARY OF NOTATION 

⋅  Averaging operator 
* Conjugate  

( )D u  Diagonal matrix with vector u at the principal  
 diagonal 
⋅  Euclidean 2 -norm 

( )E ⋅  Expectation operator 
+ Hermitian conjugate (adjoin) 
I  Identity matrix 
[ ],u v  Inner product between vector u and vector v 

{ }diag
V  Main diagonal of matrix V 

T Transpose  
{ }tr V  Trace of matrix V 

I. INTRODUCTION 
YNTHETIC aperture radar (SAR) tomography (TomoSAR) 
has the main goal of estimating the location of the vertical 

structures that scatter the field back towards the sensor [1] – 
[3]. A stack of coregistered imagery is acquired from several 
tracks with different lines-of-sight (as shown in Fig. 1), in 
order to be coherently combined using SAR interferometric 
techniques. Afterward, the vertical profiles that characterize 
the observed backscattered power spectrum pattern (PSP), for 
each azimuth-range resolution cell, are recovered using 
spectral analysis (SA) based methods [1] – [7].   

For practical TomoSAR sensing scenarios, the number of 
utilized tracks is constrained to a reduced number [4], [5] i.e., 
in order to avoid temporal decorrelation issues due to the 
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revisit time. Moreover, non-uniform acquisition constellations 
and irregular sampling introduce artifacts and increase 
ambiguity [4] – [7]. All these drawbacks complicate the 
accurate estimation of the source parameters.  

Conventional approaches to solve the ill-conditioned 
TomoSAR non-linear inverse problem retrieve an estimate of 
the PSP, in the direction perpendicular to the line-of-sight 
(PLOS), applying SA-inspired techniques in the context of the 
direction of arrival (DOA) estimation theory [3], [7], [8].   

Among the DOA non-parametric methods, there are the 
matched spatial filter (MSF) [3] and Capon beamforming [7] – 
[9] techniques. MSF is well suited to cope with scenarios 
characterized by the presence of distributed scatterers, since it 
preserves radiometric accuracy; whereas Capon beamforming 
trades radiometric accuracy for enhanced resolution. Yet, 
ultimately, the resolution capability of these SA-based 
estimators highly depends on the total baseline span [3], [4], 
[7], the so-called tomographic aperture (see Fig. 1). Meaning, 
that the arbitrarily closely spaced phase-centers may not be 
distinguished owed to the limited resolution. For the aim of 
this work, we denote as phase-centers to the mean heights of 
the multiple backscattering sources. 
 The parametric DOA estimation methods include super-
resolution approaches as multiple signal classification 
(MUSIC) [3], [4], [6] and estimation of signal parameters via 
rotational invariance techniques (ESPRIT) [8]. Both, MUSIC 
and ESPRIT, improve considerably the resolution in the PLOS 
direction and mitigate the effect of sidelobes. Nevertheless, 
these methods have the main drawback related to the 
assumption that the scene is composed by a known finite 
number of point-type like backscattering sources. 

Although point-type responses are not common in real-
world TomoSAR operating scenarios, the introduction of 
distributed models to retrieve the approximate number of 
sources that define the signal-subspace [4], [6], [7], has 
demonstrated the successful implementation of the 

aforementioned parametric DOA-based estimation techniques 
for TomoSAR applications. 
 On the other hand, taking advantage of the sparse 
representations of the cross-range profiles in the wavelet 
domain, super-resolved TomoSAR-adapted compressed 
sensing (CS) based approaches are introduced in [10], [11]. 
However, these CS-based techniques imply a considerable 
computational burden, due to their iterative nature and due to 
the non-availability of adapted efficient convex optimization 
algorithms [11, Section V].  
 As an alternative to the aforementioned commonly 
performed TomoSAR-adapted focusing methods, this paper 
tackles the ill-posed non-linear TomoSAR inverse problem 
using statistical regularization. In the previous related studies 
[12], [13], the use of different regularization approaches, 
based on maximum-likelihood (ML), has been successfully 
verified. Nonetheless, these techniques are constrained to the 
assumption that the probability density function (pdf) of the 
observed data is Gaussian. In this article, we relax this 
assumption and introduce a novel technique based on the 
weighted covariance fitting (WCF) criterion, called WISE 
(WCF-based iterative spectral estimator). This method ensures 
the alleviation of the previously mentioned drawbacks and 
retrieves a PSP with an outline more similar to the expected 
one, i.e., recovered using MSF with a higher number of tracks.   

First, the TomoSAR signal model at hand is presented; 
then, we address the different related regularization 
approaches from which WISE evolved. These techniques are 
assembled into two main groups: (i) deterministic descriptive 
regularization techniques, inspired by the Tikhonov’s 
regularization theory; and (ii) statistical regularization 
methods, in the context of the statistical decision-making 
theory. Later on, the differences and similarities between each 
regularization approach are discussed, as well as their main 
advantages and disadvantages. Finally, the implementation 
details of the proposed technique are treated, along with 
simulated examples and experimental results gotten from a 
forested test site.  

This work is organized in the following manner. The 
TomoSAR signal model is stated in Section II. Section III 
addresses the related TomoSAR-adapted deterministic 
descriptive regularization approaches. Section IV presents the 
related TomoSAR-adapted statistical regularization techniques 
and introduces the novel WCF solver. Section V offers a 
comparison between each addressed regularization approach. 
Section VI presents the implementation details of the 
introduced WISE regularization technique. Simulated 
examples and experimental results are treated in Section VII 
and Section VIII respectively. Finally, the concluding remarks 
are addressed in Section IX.  

II. TOMOSAR SIGNAL MODEL 
The Fourier spectrum of the observed data over the PLOS 

cross-range axis, in a particular azimuth-range resolution cell, 
can be modelled as an ensemble of some dominating 
scattering mechanisms (SMs) [14] – [16]. In this paper, we 
assume no a priori knowledge about the number, location or 

 
Fig. 1.  TomoSAR acquisition geometry using parallel passes (not to scale). 
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distribution of these SMs. Thus, we  resort to a non-parametric 
SMs model-free approach, in which the scatterers are assumed 
to be distributed over unknown support regions along the 
sensing search area.  

Within the context of the DOA estimation theory [3], [7], 
[8, Chapter 6], consider a TomoSAR acquisition constellation, 
composed by L tracks, as a linear array. Assuming 
coregistration independent on height, the discrete-form 
representation of the data signal vector y represents the set of 
L focused signals for a given azimuth-range position, and is 
related to the complex random scene reflectivity vector s via 
the linear equation of observation [13], [17] – [19], 
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M 1

 

× × ×

×
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  

y = A ns .    (1) 

 
Vector s gathers a sufficiently large amount of samples M, 

which characterize the continuous complex random 
reflectivity for a certain azimuth-range location. The M 
samples are taken from the elevation positions { } 1

M
m m

z
=

displaced along the PLOS height direction. The  L M×  
steering matrix A is the signal formation operator that maps    
S →Y, the source Hilbert signal space S onto the observation 
Hilbert signal space Y. Finally, vector n accounts for the 
additive noise.  

The steering matrix A is composed of M L-dimensional 
steering vectors 1{ }M

m m=a , which contains the interferometric 
phase information associated to a source located at the PLOS 
elevation position { } 1

M
m m

z
=

, above the reference focusing plane, 

which, for a particular elevation position z  is given by [7], 
 

 ( ) { } { }2

T
1,exp , ,exp

Lz zz jk z jk z =  a 

,            (2) 

 
in which 2{ }

lz l
Lk = is the two-way vertical wavenumber between 

the master track and the l-th acquisition positions,  
 

 
1

4 ,  2,..,
sinl

l
z

dk l L
r

π
l β

  = =  
  

;                    (3) 

 
where λ is the carrier wavelength, β  stands for the incidence 
angle, r1 is the slant-range distance between the master track 
and the target, and 2{ }l l

Ld = is the cross-range oriented baseline 
distance between the master position and the l-th acquisition 
position. 
   Vectors s, n, y, represent complex random Gaussian zero-
mean vectors composed of the decomposition coefficients 
{ } 1m m

Ms
=

, { } 1

L
l ln

=
 and { } 1

L
l ly

=
, of the corresponding continuous 

signal S, noise N and observation Y fields, respectively [17] – 
[19]. These vectors are specified by the employed TomoSAR 
modulation and acquisition formats and are characterized by 
the correlation matrices [7] 
 
 ( ) ( )diagsR = D b = b ,                           (4) 

 
  0NnR = I ,                                    (5) 
 
and 
 
 += +y s nR AR A R ,                             (6) 
 
correspondingly, where +  stands for the adjoint operator 
(Hermitian conjugate) and 0N  is the power spectral density of 
the white noise power [3]. Vector b at the principal diagonal 
of the diagonal matrix ( )D b , composed of the averaged 
entries  
 

 { }2

1m

M

mmb s
=

= ,                               (7) 

 
at each m-th PLOS elevation position { } 1

M
m m

z
=

, defines the 

backscattering power, referred to also as the PSP, i.e., the 
second-order statistics of the complex reflectivity vector s.  

We refer to the unconditional model in [7], well adapted for 
the representation of natural environments, in which the 
distributed media is characterized by a scattering response 
with a random behavior, i.e., rough surfaces and volumetric 
targets as forests. Therefore, in equations (4), (6), we only 
consider the unconditional model contributions as described in 
[7, Eq. 10]. The correlation matrix sR  is modelled then as a 
diagonal matrix, since it is assumed that the entries of vector s 
are uncorrelated.    

The TomoSAR inverse problem is stated as follows: given the 
complex data recordings y, defined by the linear equation of 
observation in (1), using the signal formation operator (steering 
matrix) A, and some a priori information about the statistics of 
the signal and noise, derive a solution operator F, which when 
applied to the observed TomoSAR data y, produces an estimate 
of the original signal ˆ =s Fy , being optimal/sub-optimal in some 
statistical or non-statistical sense. 

Yet, this article treats the non-linear case of the stated 
TomoSAR inverse problem, which consists in retrieving an 

estimate b̂  of the PSP vector b  in (7), expressed in the 
following manner, 
 
 { }

diag
ˆ = + +b Fyy F ,                               (8) 

 
where operator {}diag

⋅ retrieves a vector composed of the 

elements at the main diagonal of the embraced matrix.  
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Thus, the TomoSAR problem at hand entails the 
reconstruction of an optimal/sub-optimal (in some statistical or 
non-statistical sense) estimate of the vertical profiles that 
characterize the illuminated scene PSP, within each observed 
azimuth-range resolution cell. Notice that, to handle multiple 
non-deterministic sources and in order to increase accuracy in 
presence of signal-dependent (multiplicative) noise [3], the 
addressed solver in (8) may better employ the measurement 
second-order statistics presented by the data covariance matrix 
[3], [4], [7], 
 

 ( ) ( )
1

1 J

j j
jJ

+

=

= ∑Y y y ,                             (9) 

 
where j = 1, …, J  indicates  one  of  J  independent realizations 
(looks, snapshots) of the TomoSAR signal acquisitions. 
Technically, multi-looking is accomplished through the 
averaging of adjacent values or from multiple reduced resolution 
focalizations of the cell of interest via azimuth sub-apertures.  

By instance, if we take into account the classical MSF 
beamforming technique, given in a matrix-vector form by [19] 
 
 { }MSF diag

ˆ = +b A YA ,                          (10) 

  
then, we can realize that the solution operator is defined by 

+=F A .  
Normally  L M< , this makes the TomoSAR problem ill-

posed in the Hadamard sense [20], [21], since the uniqueness 
condition is not accomplished. There are more unknowns M 
than equations L in (1), meaning that an infinite number of 
solutions to the equation of observation exists. Moreover, the 
unavoidable presence of additive and signal-dependent noise 
in the observed data y, along with the inherent imprecisions of 
any problem model, adds statistical uncertainty to the PSP 
estimation problem.  
 At this stage of our analysis, we may deduce that, some form 
of constraints should be imposed to the solution operator F, in 
order to guarantee well-conditioned solutions to the TomoSAR 
inverse problem. A problem is considered well-posed in the 
Hadamard sense [20], [21], when three conditions are satisfied: 
(i) a solution exists; (ii) the solution is unique; (iii) the solution 
varies continuously with the data. 

III. DETERMINISTIC DESCRIPTIVE REGULARIZATION 
The descriptive idea of the Tikhonov’s (deterministic) 

regularization is to replace the ill-posed TomoSAR problem 
with a well-conditioned optimization problem.  

A. Constrained Least Squares (CLS) 
For the case of the constrained least squares (CLS) 

approach, the objective function ( )Λ s  refers to the standard 
least squares (LS) fitting criterion augmented with the 
minimum norm cost function [22] – [24], yielding 
 
 { }2 2arg mˆ in a= +

s
s y - As s ,                 (11) 

 where α  is a regularization parameter that acts as an 
adjustable degree-of-freedom.  

The expansion of the CLS objective function ( )Λ s  in terms 

of inner products, i.e., [ ]2 , += =x x x x x , is expressed as 
 

 ( )( ) ,α+ +Λ = − − ++ + + +s s A As y As s A y s s         (12) 

    
where the terms independent to vector s have been ignored. 
Next, we apply the standard gradient method to solve (11) 
with respect to s (the employed differentiation rules are 
gathered in the Appendix), resulting in the derivative 
expression, 
 

 ( ) ( ) ( )α+∂
Λ = − + =

∂
s A y − As s 0

s
.            (13) 

 
Rearranging the terms in (13),  
 
 ( )α+ ++ =A A I s A y ,                         (14) 

 
infers the desired CLS estimator CLSˆ =s F y , with the solution 
operator  
 

 ( ) 1

CLS α
−+ += +F A A I A ;                        (15) 

 
which admits the usage of CLSF  in (8) to retrieve an estimate 

CLSb̂  of the PSP.     
The regularization term αI in (15) is necessary to make the 

solution well-conditioned. Thus, solving (8) requires the 
choice of a suitable value 0α > , which in the limiting case 
when 0α → , the problem is reduced to its unconstrained ill-
posed LS version. How to select a proper value of α  is out of 
the scope of this paper, but the reader may refer to [23], [24].  

B. Weighted Constrained Least Squares (WCLS) 
The weighted constrained least squares (WCLS) approach 

employs a modification of the metric structures in the 
observation Y and signal S spaces, induced by the weighted 
square norms [22] 

 

 ( ) ( ) ( ) ( )2 , YY Y

+= =  y - As y - As y - As y - As W y - As ,   (16) 

 
 [ ]2 , SS S

+= =s s s s W s .                         (17) 
 
where YW  and SW  are symmetric definite-positive invertible 
(well-conditioned) weighting matrices. 

Prior knowledge about the form of the solution is embedded 
in the weighting matrix YW , which makes the selection of 
such matrix problem dependent.  

Following the same strategy as the CLS approach, the 
WCLS optimization problem is defined by  
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 { }2 2arg minˆ
Y S

a= +
s

s y - As s .                     (18) 

 
Here, the modified augmented objective function ( )Λ s  is 
given by 
 
 ( )( ) ,Y Y Y Sα+ +Λ = − − ++ + + +s s A W As y W As s A W y s W s   (19) 

 
where the terms independent to vector s have been ignored. 
Applying the standard gradient method to solve (18) with 
respect to s, results in the derivative expression, 
 

 ( ) ( )Y Sα+∂
Λ = − + =

∂
s A y − AsW W s 0

s
,            (20) 

 
that yields the variational equation 
 
 ( ) .Y S Yα+ ++ =sWA AW WA y                  (21) 

 
The WCLS solver WCLSˆ =s F y  has the same form as the CLS 

estimator, but with a different solution operator  
 

 ( ) 1

WCLS Y S Yα
−+ += +F A A AW W W ,                 (22) 

 
which can also be used in (8) to retrieve an estimate WCLSb̂ . 
 The WCLS algorithm offers additional degrees-of-freedom 
at the signal processing level. These are determined by the 
weights that induce the metrics in the observation Y and signal 
S spaces. The setting of different weights ( Y ≠W I , S ≠W I ) 
imposes prior knowledge on the solution via regularization, 
making the desired solution smoother and continuously 
dependent on the data.  

IV. STATISTICAL REGULARIZATION  
In the statistical regularization methodology, the inference 

is made in terms of probabilistic statements, where the Bayes 
minimum risk (BMR) estimation strategy plays a key role [17] 
– [19], [25]. 

A. Bayes Minimum Risk (BMR) 
The main distinction between the Bayes strategy and the 

presented descriptive regularization methodology is in the use 
of probabilistic models that quantify the uncertainty of the 
unknowns. The signal s and the observed data y are 
intrinsically random processes, characterized by their 
probability distributions. 

We first introduce the loss function [22], [24], 
 

 ( ) 2, -f =s Fy Fy s ,                           (23) 
 

that represents a measure of loss or discrepancy between the 
desired information (signal) vector s and its actual estimate 

ˆ =s Fy . The Bayes risk functional is the expected value of the 

loss ( ) ( )( )2
E -r = +F F As n s .  

The BMR strategy is formulated as that of deriving the 
linear operator F that provides a solution to the following 
optimization problem [17], [18], [25], 
 

 ( )( ){ }2
Earg min -= +

F
F F As n s .                (24) 

 
Notice that ( )r F  can be decomposed in terms of inner 

products as 
 

 ( ) ( ) ( )( ) ( )E Er ++ + += − − +F s FA I FA I s n F Fn .       (25) 

 
Using the following properties [17], [18],  
 
 { }tr+ +=x Qx Qxx ,                            (26) 

 
 { } { } { }tr tr tr= =OPQ QOP PQO ,                 (27) 
 
in which x is an arbitrary vector and OPQ are square matrices, 
yields 
 

 ( ) ( ) ( )( ){ }
( )

( ){ }
( )

tr E tr E

ns

r

rr

+ + + += − − +F FA I s s FA I F n n F

FF
((((

((((((((((

.  (28) 

 
Here, the first term at right hand ( )sr F represents the measure 
of discrepancy between the composition FA and I, meaning 
how the solution operator F differs from the system 
pseudoinverse. While ( )nr F  is the measure of noise energy in 
the resultant solution. 
   To determine the optimum operator F, we differentiate the 
risk functional ( )r F with respect to F (see the Appendix) and 
set the result to zero, 
 

 ( ) ( ) ( ) ( )2 E2Er + + +∂
= + =

∂
− 0

F
F FA I s s A F n n .      (29) 

  
Rearranging the terms in (29),  
 
 ( ) ( )( ) ( )E E E+ + + + ++ =F A s s A n n s s A ,             (30) 

 
and recognizing that ( )E + = ss s R  in (4) and ( )E + = nn n R  in 

(5),  we  derive  the  BMR  optimal  (in a statistical sense)  
solution operator, 
 

 ( ) 1

BMR

−+ += +s s nF A A RAR R ,                   (31) 
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used in (8) to retrieve an estimate BMRb̂ .  
The BMR methodology results in the tractable solution for 

any fixed but unknown probabilities of the desired vector and 
data.  

The main disadvantage of such approach relies on the a 
priori knowledge of the correlation matrices sR  and nR . 
Factor 0N  in (5) is typically evaluated directly from the 

actually acquired measurement data y. While, ˆ( )sR = D b  in 
(4) depends on a first estimate of the PSP [ ]0b̂ , which makes 

BMRF  a solution-dependent solution operator. 
 The BMR strategy provides the overall optimality of the 
solution, which is the minimum value of the Bayesian risk. 
The latter refers to the compromise between the systematic 
and fluctuation errors in the resulting solution. 

B. Maximum-likelihood (ML) 
Due to the intrinsic statistical nature of the physical 

phenomena, responsible of forming the signal s, noise n and 
data y vectors, it is customary to model them as random 
(stochastic) vectors.  

A statistical vector represents, in theory, an infinite number 
of different realizations of a process. Such vector is explicitly 
characterized through its probability density function (pdf). 
The pdf of the L-dimensional Gaussian zero-mean complex-
valued vector y  is given by [12], [13], [26], 
 
 ( ) { } ( ){ }1 1det expLp p − − + −= −y yy R y R y .            (32) 

 
In order to retrieve a statistically optimal solution to the 

previously specified non-linear ill-posed TomoSAR inverse 
problem, the addressed BMR strategy is extended to the 
maximum a posteriori (MAP) probability approach [22], by 
imposing no constraints on linearity and by assuming a priori 
Gaussian statistics of the noise n and PSP b vectors, that 
results in 
 
 ( ){ }MAP arg max ̂ p=

b
b b | y .                    (33) 

 
Using the pdf Bayes formula, we express the conditional pdf 
as 
 
 ( ) ( )( ) ( ) ( )  1p p p p=b | y y y | b b .              (34) 

 
While its logarithm is given by 
 
 ( ) ( ) ( ) ( )  ln ln ln lnp p p p= + −b | y y | b b y .         (35) 
 

In scenarios where the a priori pdf ( )p b  is unknown 
(which is the case under study) and set to a constant 
distribution, the MAP strategy reduces to the ML 
methodology. Thus, setting ( )p const≈b  and ignoring the 

terms that do not comprise b in (35), we define the log-
likelihood function of vector b as the logarithm of the 
conditional pdf ( )p y | b  

 
 ( ) 1 ln ln det{ }p + −= − −y yy | b R y R y ,               (36) 
   
where the terms that do not contain b have been ignored. The 
ML solution is then reduced to the minimization problem 
 
 ( ){ }ML

ˆ arg mi n= L
b

b b ,                       (37) 

 
with the objective function ( ) ( )ln pΛ = −b y | b .  
 In [13], equation (37) is solved using the standard gradient 
method, yielding a technique named MARIA (ML-inspired 
adaptive robust iterative approach). This paper solves (37) in a 
different manner, whose new developments play an important 
role in the succeeding derivation of WISE.  

First, as in [13], we apply the standard gradient method to 
solve (37) with respect to b (refer to the Appendix), resulting 
in the derivative expressions, 
 

 { }1

diag
 ln det{ } + −∂

=
∂ y y AR A R
b

,                 (38) 

 

 { }1 1

d

1

iag
  + − −+ − +∂

= −
∂ yy yA R yy R Ay R y
b

.             (39) 

 
Recall that ( ) ( ) += = +y y nR R A AbDb R .  

Consider the next property for a diagonal matrix D(b) and an 
arbitrary square matrix Q [13], [17], [19], 
 
 ( ){ } ( ){ }diag diag

=D b Q D b Q .                   (40) 

 
Setting the derivative of ( )Λ b  to zero, rearranging and 

multiplying both sides by ( )2D b  yields to 
 
 ( ) ( ){ } ( ) ( ){ }1 1 1

diag diag

+ − + − + −=y y yD b A R yy R AD b D b A R AD b . (41) 

 
Now, taking into account the Capon spectral estimate [3], [8], 
[9], of the PSP vector b, 
 

 Capon 1

1

1ˆ
m

M

m m m

b + −

=

  = 
  ya R a

,                       (42) 

 
 and performing a sequence of evident manipulations, equation 
(41) can also be expressed as follows 
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( )

1 1

2 11

1

1
M

m m

m mm m m

+ − + −

+ −+ −

=

 
 = 
  

y y

yy

a R yy R a
a R aa R a

,               (43) 

 
which holds for +==yR Y yy .  

Since Capon
ˆ≈b b , an approximate solution to (37) can be 

retrieved. The latter leads to the formulation of the ML-based 
method [26, Eq. 32],  
 

 
( )

1 1

ML 21

1

ˆ
m

M

m m

m m m

b
+ − −

+ −

=

 
 = 
  

y y

y

a R YR a

a R a
,                     (44) 

 
with +=Y yy .  

Equation (44) can also be represented as a non-linear matrix-
vector equation { }ML ML ML diag

ˆ +=b F YF with  

 
 ( ) 1

ML
ˆ + −= yF D b A R ,                             (45) 

 
and b̂ , at the principal diagonal of ˆ( )D b , recovered using 
(42). It can be observed that, the corresponding solution 
operator MLF  is also solution-dependent, as the one utilized by 
the BMR solver in (31). 

In the MAP estimation strategy, we involve a priori 
information about the desired PSP vector b in the form of its a 
priori pdf p(b). This leads to the augmented criterion functional 
in (35), where the second term pertains to our prior knowledge. 

In contrast, in the proposed ML estimation strategy, we do not 
impose any a priori knowledge about the statistical distribution 
of the desired PSP vector b. Information about vector b is 
extracted only from the measurement data, as expressed in (36).  
 Equation (44) is the basis for several approaches; differ one 
from each other depending on the assumptions and 
considerations made during the respective implementations.  
 The solution to the Capon spatial filter design problem [8] 
 

 { }
1

arg min   s.t.  1 
m

M

m m m m
m

+ +

=

 = 
 

y
h

h R h h a ,              (46) 

 
with { } 1

M
m m=

h  as weighting vectors, is actually given by (44). 
The classical Capon beamforming [8, Eq. 6.3.26] simply 
assumes that +==yR Y yy .  

Derived differently, equation (44) is also the basis for the 
iterative adaptive approach for ML (IAA-ML) introduced in 
[26, Eq. 32]. The IAA-ML works well with arbitrary array 
geometries and can be extended to give sparse results via 
model-order selection [26]. 

The wavelet domain thresholding (WDT)-refined virtual 
adaptive beamforming (WAVAB) technique introduced in 
[27, Eq. 19 and Eq. 20] solves (44) in an adaptive fixed-point 
iterative fashion that do not involve any matrix inversion at all 

iteration steps, which differs from Capon beamforming that 
requires inversions of Y  and from IAA-ML that requires 
inversions of yR .  

Finally, the implementation of (44) introduced afterward in 
Section VI is presented as a different version of MARIA [13], 
since, as in the previous version, it refers to an adaptive 
iterative ML-based approach, which refines, after each 
iteration, a first estimate of the PSP. It performs resolution-
enhancement, suppression of artifacts and ambiguity levels 
reduction. Treated as an extension of Capon (refer to (43)), we 
suggest recovering the first PSP estimate using Capon 
beamforming, however, as we will observe later, the algorithm 
allows for the usage of any TomoSAR focusing technique for 
this purpose.  

C. Weighted covariance fitting (WCF) criterion 
If we relax the Gaussian assumption in (32), then the 

estimates given after solving (37) are no longer ML estimates. 
In such a case, it makes more sense to use a covariance fitting 
criterion. Thus, taking into consideration the developments of 
the previously addressed regularization approaches, a new 
method based on the WCF criterion [28] – [30] is introduced.  

For the single-look case, the WCF criterion refers to the 
following optimization problem [28] – [30], 
 

 ( ){ }21/2
WCF arg mˆ in  − += −y y

b
b R yy R .               (47) 

 
Recall that ( ) ( ) += = +y y nR R A AbDb R .   

The expansion of the objective function ( )Λ b is given by 
[29],  
 

 { }2 1 ( ) tr+ −Λ = +y yb y y R y R ,                     (48) 

  
where the terms independent to vector b have been ignored.  

It follows from (48), that the minimization of (47) is 
equivalent to the minimization of  

 

 
{ }
{ }

1
tr

 ( )
tr

+ −Λ = + y
y

R
b y R y

Y
,                       (49) 

 
since 
 

 [ ] { }2 , tr += =y y y yy ,                        (50) 

  
and +=Y yy , as previously defined in (9).  
 In [28], [29], (47) is solved with the aim of introducing the 
semiparametric/sparse iterative covariance-based estimation 
(SPICE) method. Yet, instead of deriving a line-spectrum 
estimator as SPICE, this paper presents a novel non-
parametric approach.  

Keeping in mind the developments that yield equation (44), 
from which the non-parametric approaches Capon, IAA-ML 
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and WAVAB are inferred, this paper provides a solution to 
(47), which has a similar structure to (44).    

We apply the standard gradient method to solve (47) with 
respect to b. According to the earlier addressed ML approach, 
the derivative expression of the first term at right hand of the 
objective function in (49), yields 
 

 { }1 1

d

1

iag
  + − −+ − +∂

= −
∂ yy yA R yy R Ay R y
b

.              (51) 

 
Next, consider the derivative operation (refer to the Appendix) 
 

 { } ( ){ }r t tr + +∂ ∂
=

∂
=

∂y A A A
b b

R D b A ,             (52) 

 
where matrix A is not function of  vector b, and the term that 
does not comprise b is ignored. Here +=Ψ A A  is recognized 
to be the discrete-form ambiguity function matrix operator, 
which describes the distortions due to focusing [31]. 

Taking into account the derivative expressions in (51) and 
(52), we set the derivative of ( )Λ b to 0, and we express it as 

 

 
{ }

1

1

1 1  
tr

M

m m m m

m

−+ +−

=

  = 
  

y ya a a a
Y

R YR .                  (53) 

 
As in the prior ML case, we make use of the Capon spectral 
estimate [3], [8], [9], of the PSP vector b in (42) to derive a 
WCF-based solver. Multiplying both sides in (53) by (42), and 
performing a sequence of evident manipulations, gives 
  

 
{ } 1 1

1

1

1

tr 1  
M

m m

m m m m m m m

−+

+ + − +

−

−

=

   =      

y y

y y

R YRa aY
a a a a aR aR

.           (54) 

  
The term at right hand of equation (54) is recognized to be the 

Capon’s spectral estimate of the PSP, Capon
ˆ≈b b , leading to 

an approximate solution to (47) . The novel proposed WCF-
inspired solver is then given by 
 

 
{ } 1 1

1WCF

0

trˆ  
m

M

m m

m m m m m

b
− −+

+ +

=

−

   =       

y y

y

a aY
a a a a

R YR
R

.            (55) 

  
The introduced approach results to be also solution 

dependent, since, by definition, matrix yR  in (6) depends on a 
first estimate of the PSP [ ]0b̂ . As in (43), the term at right 
hand of equation (54) represents the asymptotic of the filter 
output given on the left hand side.  

V. SIMILARITY BETWEEN THE ADDRESSED  
REGULARIZATION APPROACHES 

The WCF-inspired method in (55) has been derived as a 
consequence to the developments employed to yield the 

related addressed regularization techniques. This section treats 
the relationship between the aforementioned deterministic and 
statistical estimators.   

In order to reveal the similarity between the addressed 
techniques, we derive a second representation of the optimal 
BMR solution operator BMRF  in (31). Employing the 
Frobenius formula for inverting the matrix of special form 
[13], [17], [18], 
 
 1 1 1 1− − − + −= −y n n nR R R AUA R ,                     (56) 

where 
 
 ( )1 11 −+ − −= +n sU A R A R ;                         (57) 

 
and performing some mathematical manipulations, we get 
 
                    ( )1 1 1

BMR
− − + −+ −= s n n nR R AUA RF R A                             

        ( )1 1 1+ + −− −= − n ns U UA R A A RR                      

        1+ −= nUA R .                                                 (58) 
  
Consider now the δ-correlation simplest model of noise and 
signal, 0NnR = I , 0SsR = I , in which case 
 

 
1

0
BMR

0

N
S

+ +

−
 

=  


+


IF A A A ,                     (59) 

 
has the same structure of the CLS solution operator in (15), 
but with a regularization parameter 0 0/N Sα = , which 
provides a balance between the systematic and noise error 
measures.     

On the other hand, any of both WCLS and BMR methods 
can be referred to as the particular case of another under some 
model assumptions. Putting 1

Sα −= sW R  and 1
Y

−= nW R  
yields 
 

 ( ) 1

W
1

LS
1

C BMR
1+ − − − + −= = +n s nA R A R A RF F .           (60) 

  
In this way, the deterministic WCLS technique provides a 
statistically optimal solution, in the BMR sense, to the 
TomoSAR inverse problem. When the prior knowledge of  

nR  and sR  is available, then the WCLS method provides an 
estimator which performs the statistically best behavior. In 
other cases, the WCLS method provides the robust 
approximation of the statistically optimal BMR technique. In 
such instance, the unknown models nR  and sR , can be 
approximated by adjusting the degrees-of-freedom, YW  and 

Sα W . 
The addressed ML approach is treated as an extension of 

the BMR strategy. This is noticeable, since both ML and BMR 
solution operators F, have the same structure as in (31) (refer 
to the definition of sR  in (4) and yR  in (6)). The difference 
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lies in the content of the principal diagonal of the diagonal 
matrices ˆ( )D b  in (31) and (45) respectively. For the ML case, 

the main diagonal of matrix ˆ( )D b  in (45) is composed of a 
first estimate of the PSP [ ]0b̂ , retrieved using the Capon 
approach given by equation (42). While, for the BMR case, 
there are no constraints in the choice of the focusing technique 
in charge of recovering a first estimate [ ]0b̂ . Therefore, the 
ML approach can be stated as a particular case of the BMR 
method. 

Notice that, the ML-inspired solver in (44) becomes the 
Capon method in (42) when = yY R . Meaning, that the 
addressed ML-based technique can be also seen as a variant 
(improvement) of the Capon approach, adapted to the case 
when there are discrepancies between the measured data 
covariance matrix Y  and the actual (modelled) data 
covariance matrix yR . 

The WCF minimization problem in (47) relates to the 
addressed ML optimization problem in (37), in that both 
objective functions share the same term 1+ −

yy R y . Since both 
minimization problems are tackled applying the standard 
gradient method, the resultant derivative expression of such 
term results to be the same. 
 Following the developments that derived into the ML 
technique, the WCF solver in (55) is presented as well as a 
modification to the Capon approach in (42), but employing the 
WCF criterion. For the particular case, when = yY R , an 

estimate of the PSP b̂  is recovered using only the information 
extracted from the measured covariance matrix Y  and the 
ambiguity function matrix operator Ψ .  
    Finally, for an easy assessment, a synthesized view of the 
addressed regularization approaches is depicted in Table I.  

VI. ITERATIVE ADAPTIVE IMPLEMENTATION 
In the previous related studies [12], [13], the TomoSAR 

inverse problem is tackled using statistical regularization 
approaches based on ML. Being (44) a ML-inspired 
technique, which also presents a similar structure to the 
introduced WCF-based method in (55), we choose this 
regularization technique for further comparisons. 

This section presents the implementation details of both 
MARIA (inferred from (44)) and WISE (inferred from (55)) 
iterative adaptive approaches.  

Before introducing the corresponding implementations, we 
perform a subtle but important modification to the respective 
basic equations, given by   
 

 
1 1

MARIA 1

1

ˆ ˆ
m

M

m m
m

m m m

b b
+ − −

+ −

=

  = 
  

y y

y

a R YR a
a R a

,               (60) 

and  
 

 { }
1 1

WISE

0

ˆ  tr ˆ
m

M

m m

m m m

mb b
+

+

− −

=

  = 
  

y ya a
a a

R YR
Y ,             (61) 

 
respectively. 

The introduced WISE technique, along with MARIA, is a 
statistical regularization approach that requires of the PSP 
vector b as a priori information. The iterative adaptive 
implementations of such methods, given in Table II and Table 
III, correspondingly, are considered as sub-optimal versions of 
the ML technique in (44) and the WCF method in (55), since 
the actual PSP vector b is unknown and needs to be firstly 
estimated ( [ ]0ˆ ≠b b ).  

TABLE I 
SIMILARITY BETWEEN THE ADDRESSED REGULARIZATION APPROACHES 

Optimization 
Criterion Regularization Technique Particular Cases Condition 

CLS* 

{ }
diag

ˆ +=b FYF  

( ) 1

CLS α
−+ += +F A A I A  CLS LS=F F  0α →  

WCLS* ( ) 1

WCLS S Y Sα
−+ += +F A A AW W W  WCLS CLS=F F   S =W I  and Y =W I  

BMR** 

( ) 1

BMR
1 1 1+ − − +− −+= n s nA R A R A RF   

BMR CLS=F F   0NnR = I  and 0SsR = I ; 

0 0N Sα =  

BMR WCLS=F F  1
Sα− =sR W  and 1

Y
− =nR W  

( ) 1

BMR

−+ += +s s nF A A RAR R  BMR ML=F F  { }Capon 1
ˆˆ

m

M

m
b

=
=b  in ( )ˆ

sR = D b  

ML** 
( )

1 1

ML 21

1

ˆ
m

M

m m

m m m

b
+ − −

+ −

=

 
 = 
  

y y

y

a R YR a

a R a
 ML Capon

ˆ ˆ=b b  =yR Y  

WCF** 
{ } 1 1

1WCF

0

trˆ  
m

M

m m

m m m m m

b
− −+

+ +

=

−

   =       

y y

y

a aY
a a a a

R YR
R

 WCF Capon
ˆ ˆ=b b  { }

1

0

1

 tr 1
M

m m

m m m
+

=

− −+  = 
  

y ya a
Y

a
YR
a

R
 

       * Descriptive regularization   ** Statistical regularization    
 

 
 
 



 10 

Because of consistency reasons, the first estimate [ ]0b̂  is 
retrieved using the conventional Capon beamforming 
technique, which in a matrix-vector form is defined by [19] 

 

 { }( ) 1
-1

Capon diag
diag

ˆ
-

+  =     
b D A Y A ;               (62) 

 
notice that, in contrast to (42), here we assume that =yR Y . 
Consequently, the degradation or improvement of the 
retrieved solutions depends on the precision of the first 
estimate [ ]0

Capon
ˆ ˆ=b b . The latter entails the constraint that a 

high number of looks is required in order to avoid the rank-
deficiencies of the data covariance matrix Y and to assure the 
best performance of Capon.         

Another drawback is that the dependence on a first estimate 
[ ]0b̂  implies that no unique regularization method to recover 

b̂  in (60) and (61) exists [13], [18]. Different solutions to the 
TomoSAR non-linear inverse problem are retrieved for 
different estimates [ ]0b̂ , i.e., when it is in some way corrupted. 
To cope with this problem, such MARIA and WISE 
estimators are implemented in an adaptive (with respect to the 
desired solution) iterative manner, as shown in Tables II and 
III. Nonetheless, this only alleviates the problem until certain 
extent, when the discrepancies between the different estimates 

[ ]0b̂  are not highly significant.  
At first instance, notice that, in comparison to IAA-ML [26, 

Table II] the MARIA (Table II) and WISE (Table III) 
algorithms have a different initialization. The IAA-ML is 
restricted to the standard delay-and-sum beamformer, whereas 
MARIA and WISE utilize Capon beamforming. Nonetheless, 
the algorithms allow for the usage of any TomoSAR focusing 
technique for the retrieval of the first estimate of the PSP.   

  The main difference between IAA-ML and the MARIA 
and WISE algorithms is related to the modified expressions in 
(60) and (61), respectively. The first entry to IAA-ML is 
strictly employed to construct the data correlation matrix yR , 
which is used later to re-compute a new PSP estimate through 
(44). This process is repeated on each iteration. In contrast, for 
the cases of MARIA and WISE, the first-input (zero-step 
iteration) PSP estimate is not re-calculated but rather refined 
after each iteration. Furthermore, in order to guarantee 
convergence, we incorporate the projector onto convex 
solution sets (POCS) operator. 

Since the minimization problems to be solved are convex, it 
is expected that they converge under the conditions that 

[ ]
10{ }Mi

m mb =≥  and that yR  remains positive definite, as the 
number of iterations increases [28]. Hence, in order to 
guarantee convergence, we incorporate the POCS operator 

{}γ+ ⋅  into the iterative solvers, that clips off all entries lower 
than the user specified nonnegative tolerance threshold, 0γ ≥ , 
in the solution space [21],  
 

 { } 0  if  
  if  

x
x

x xγ

γ
γ+

<
=  ≥

  .                         (63) 

 
Incorporation of {}γ+ ⋅  into the implicit iterative solvers 
guarantees its convergence; that is a direct sequence from the 
fundamental theorem of POCS [21, Sect. 15.4.5]. The number 
of iterations needed to achieve convergence depends on the 
accuracy of the first input (zero-step iteration) [ ]0b̂ .   

Factor 0N  is treated as a user specified degree-of-freedom, 
which performs diagonal-loading to the correlation matrix yR  
in (6). A priori unknown reflectivity values may complicate 
the selection of 0N  in practice. In such a case, the 
normalization of the data covariance matrix is recommended.  

With the proposed extensions, the previous warnings about 
the TomoSAR inverse problem being ill-conditioned do not 
apply, since the whole purpose of the ML-inspired and WCF-
based regularization, via iterative adaptive processing, is to 
cure that same ill-conditioning. As any other regularization 
approach, the proposed techniques retrieve only an estimate of 
the PSP b due to the lack of enough information. 

TABLE II 
THE ML-INSPIRED ITERATIVE ADAPTIVE APPROACH (MARIA)  

 

[ ] { }( ) 1
-1

Capon diag
diag

0

ˆ ˆi

i
-

+

=

  = =     
b b D A Y A

 

do  
[ ]( )( ) 1

1
0

ˆ i N
−

− += +y bR A ID A  
for m = 1, …, M  

[ ] [ ]
1 1

1
1

ˆ ˆm mi i
m m

m m

b bγ

+ − −
+

++ −

  =  
  

y y

y

a R YR a
a R a

  

    i + +  

while [ ] [ ]1ˆ ˆi i
TLε+ − >b b  or MAXi i≠    

[ ]
MARIA

ˆ ˆ i I==b b  

 

 

 
 

TABLE III 
THE WCF-BASED ITERATIVE SPECTRAL ESTIMATOR (WISE)   

 

[ ] { }( ) 1
-1

Capon diag
diag

0

ˆ ˆi

i
-

+

=

  = =     
b b D A Y A

 

do  
[ ]( )( ) 1

1
0

ˆ i N
−

− += +y bR A ID A  
for m = 1, …, M  

[ ] { } [ ]
1 1

1ˆ ˆtr m m

m m

i i
m mb bγ

− −+

+
+

+

  =  
  

y yR Ya
Y

a a
R a

  

    i + +  

while [ ] [ ]1ˆ ˆi i
TLε+ − >b b  or MAXi i≠    

[ ]
WISE

ˆ ˆ i I==b b  
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The algorithm of MARIA and the introduced WISE 
method, implemented in an iterative adaptive manner, as 
depicted in Tables II and III, respectively, is described next. 
Step 1)  Choose a particular value of factor 0N  in yR  (6), 

which acts as a user specified diagonal-loading 
parameter.  

Step 2)  Specify the POCS threshold value 0γ ≥ . We 
recommend the simplest (zero) assignment, 0γ = , 

0{} {}γ+ +⋅ = ⋅  , which defines the constraining 
projector onto the nonnegative convex cone solution 
set. 

Step 3) Apply the Capon beamforming technique in (62) to get 
the zero-step iteration [ ]0b̂ . It is important to remark 
that a high number of looks is advisable in order to 
avoid the rank deficiency of the data covariance matrix 
Y in (9). 

Step 4) Compute the inversion of the diagonal-loaded (thus 
invertible) data correlation matrix [ ]1 ˆ( )i−

yR b  in (6), 
which is updated (refined) at each i-th iteration.  

Step 5) Perform the preferred MARIA (60) or WISE (61) 
regularization approach, utilizing the previously 
computed matrix [ ]1 ˆ( )i−

yR b  and the previously 

recovered estimate [ ]ˆ ib  of the PSP vector b. 
Step 6) Repeat steps 4 and 5 until the respective iterative 

process is terminated at [ ]ˆ Ib , when the user specified 

2 -norm convergence control tolerance level εTL is 

attained at some i = I, or the maximum admissible 
number of iterations is reached [31]. 

 
VII. SIMULATION RESULTS 

The behavior of the novel introduced WISE tomographic 
estimator is first demonstrated through its application on 
simulated data covariance matrices Y in (9), constructed from 
the outer product between the respective data vectors y in (1) 
and its Hermitian conjugates, for J independent looks.  

Each data covariance matrix Y gathers the echoes of three 
hundred scatterers with equal reflectivity, displaced along the 
height direction. They follow (for convenience) three 
Gaussian distributions among independent looks, with phase-
centers (means) located at 1 4 z = − m, 2 0 z = m and 3 3 z =
m, correspondingly. We consider a varying spread (standard 
deviation) 0.1 m 1.5 mσ≤ ≤  (Fig. 2 shows two representative 
cases) and a noise power spectral density 0N = 0.01. 

The simulated tomographic acquisition geometry spans a 
PLOS synthetic aperture of 70 m with L = 15 tracks evenly 
distributed. The considered L-band SAR sensor (0.23 m 
wavelength) is assumed to be at a nominal altitude of 3000 m. 
We consider a slant-range distance of 5000 m between the 
master track and the middle target, meaning a Fourier 
resolution [4] of about 8.2 m. 

For comparison purposes, we refer to MARIA in (60) and 
to the most competing commonly performed non-parametric 
focusing methods, which include Capon in (62) and CS [10], 
[11]. The CS approach presented in [10], [11] raises from the 
solution to the covariance-matching convex optimization 

 

 
(a) 

 

 

 
(b) 

 

Fig. 2. Distribution of 300 scatterers displaced along the height direction, following three Gaussian distributions among  J = 350  independent looks, with phase-
centers (means) located at 1 4z = −  m, 2 0z =  m and 3 3z =  m correspondingly, and spread (standard deviation) of (a) 0.8σ =  m and (b) 1.3σ =  m, 
respectively. The theoretical distribution, for each case, is presented at the right side.  
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problem 
 

 ( ){
} { }

2

1ˆ 2,1 F

TV 12

ˆ ˆmin

ˆ       ˆ s.t 0 ,. 
M

m m
b

t

t

+

=
>

+ −

+

b
Ωb Y

b

AD b A                   (64) 

 
where Ω  is a wavelet transform sparsifying matrix. Here, the 
relaxation parameters 1 2, 0ττ  ≥ , control the trade-off between 

the sparsity in Ω , model mismatch and the total variation 
(TV) regularization term. For the presented analyses we 
consider the equi-balanced adjustment 1 2 0.5ττ = = . 

 The aforementioned TomoSAR focusing techniques are 
applied to the simulated data covariance matrices Y with the 
aim of retrieving the PSP for the respective cases. No prior 
model order selection is conducted. To get the approximate 
location of the phase-centers after tomographic focusing, we 
look for the three most prominent local maxima. Recall that, 
for a Gaussian distribution, the corresponding mean value 
(phase-center) is located at its maximum. Later on, we 
compare these results against the already known positions.  

First we set 0.8σ = , as in Fig. 2(a), and simulate the data 
covariance matrix Y with different number of looks in order to 
investigate the asymptotic properties of the Capon, CS, MARIA 
and WISE estimators. Fig. 3 shows the convergence properties 
of these focusing techniques to a lower mean square error 
(MSE) as the number of looks J increases, being CS the 
technique with the best performance. Capon presents worse 
results for a low number of looks, being inapplicable when 
matrix Y is rank deficient ( J L< ) due to the involved 
inversion of the data covariance matrix Y in (62).  

The MARIA and WISE techniques follow the same trend as 
Capon, since, by constructions, both regularization methods 
are presented as an extension of the Capon method, which acts 
as an initial input (zero-step iteration) in the corresponding 
adaptive iterative procedures (see Table II and Table III). The 
degradation or improvement of the solutions depends on the a 
priori information given in the form of a first estimate [ ]0b̂  of 
the PSP vector b. Therefore, a high number of looks (J = 350) 
is chosen, for which Capon beamforming presents enhanced 
performance. 

Fig. 4 compares the MSE between the estimated and actual 
locations of the three most prominent local maxima, retrieved 
using the competing methods (Capon, CS and MARIA) and 
the novel proposed approach (WISE) for different spread 
values σ ; while Fig. 5 compares the Fréchet distance [32], 
[33], between the estimated and actual (theoretical) vertical 
profiles, correspondingly.  

The Fréchet distance is commonly used to measure the 
similarity between two curves, taking into account the order 
and location of the points that compose them1. 

Mathematically, the Fréchet distance between two curves is 
defined as follows [31], 
 

 

Fig. 3. MSE between the estimated and actual positions of the three 
most prominent local maxima for a spread value 0.8σ =  m versus 
number of looks J. We refer to Gaussian distributions to model the 
backscattering. Each point is the average of 100 Monte-Carlo trials. 

 

Fig. 4. MSE between the estimated and actual positions of the three 
most prominent local maxima versus spread value σ . We refer to 
Gaussian distributions to model the backscattering. Each point is the 
average of 100 Monte-Carlo trials. 

 

 
Fig. 5. Fréchet distance between the estimated and the theoretical 
backscattering profiles versus spread value σ . We refer to Gaussian 
distributions to model the backscattering. Each point is the average of 
100 Monte-Carlo trials. 

 
 

 
 
 

1Traditionally, the Fréchet distance is exemplified through the analogy of a man walking a dog. Suppose that a man is walking on one curve and a dog on 
another, both are allowed to adjust their speed but cannot move backwards. The Fréchet distance of the two curves is the minimum length of leash necessary 
to connect the man and the dog. 
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The values given in Fig. 5 were obtained using the 
algorithm presented in [33], which computes the Fréchet 
distance between two arbitrary curves by approximating them 
with polygonal curves.    

As it can be observed through Fig. 4 and Fig. 5, the value of 
the MSE and Fréchet distance measurements increase as the 
spread value σ  increases. This is expected, since the scatterers 
within each individual Gaussian distribution start mixing 
together, which makes the PSP more challenging to estimate.      

The Capon’s curve in Fig. 4 stops at the spread value of 
1.0σ = m, since later on such solver is not capable to distinguish 

the presence of three local maxima.  
Fig. 4 shows that the competing state-of-the-art CS [10], 

[11] and MARIA super-resolved techniques perform better on 
the retrieval of the location of the corresponding local 
maxima. For the reported numerical examples, CS retrieves 
the more accurate estimates of the local maxima, followed by 
the MARIA technique. Since the simulated scatterers follow 
well-defined Gaussian distributions, it is expected that 
MARIA performs better in this subject than the introduced 
WISE approach. 
 Although, CS recovers more accurate positions of the local 
maxima, it incurs much more computation time in contrast to 
the other competing methods, as depicted in Table IV. This is 
due to the iterative nature of the method and due to the non-
availability of adapted efficient convex optimization 
algorithms [11, Section V]. Specifically, the CVXPY software 
library [34] has been employed to solve the involved convex 
optimization problem in (64). 

Additionally, Fig. 5 shows that MARIA and WISE provide 
more information on the actual outline of the simulated 
backscattering vertical profiles, in contrast to the other CS 
competing technique.        

Being WISE an extension of the Capon method [3], [7] – 
[9], we now validate the feature-enhancement characteristics 
of this novel technique via two individual representative cases: 
(i) A volumetric target with spread of 0.8σ = m (as depicted in 
Fig. 2a), for which Capon beamforming still distinguishes the 
presence of three local maxima; (ii) A volumetric target with 
spread of 1.3σ = m (as shown in Fig. 2b), for which Capon 
beamforming is not able to discriminate the presence of three 
local maxima. The comparison against the TomoSAR-adapted 
competing methods, MSF beamforming in (10), Capon in 
(62), CS in (64) and MARIA in (60), is presented through Fig. 
6 and Fig.7, for the respective cases. Notice that the true 
positions of the phase-centers, for each individual distribution, 
are pointed out through three black circles. 

Since the addressed MARIA and WISE statistical 
regularization approaches involve several matrix-vector 
operations, which include matrix inversions, we do not expect 
to preserve radiometric accuracy as the standard Fourier 
beamforming [1] does. Thus, we refer to a (0 to 1) normalized 
pseudo-power in the plots given afterward. 

Fig. 4 shows that, in contrast to WISE, Capon recovers 
more accurate positions of the previously specified local 
maxima for spread values less than 1.0σ = m. However, 
WISE retrieves better Fréchet distances, as seen in Fig. 5.  

As it can be observed via Fig. 6(b) and Fig. 7(b), the 
concave up curves that separate the Gaussian distributions of the 
actual PSP (depicted in Fig. 2) are more difficult to follow for 
Capon, especially when σ  increases. Consequently, the 
computed Fréchet distances for Capon worsen as the spread 
value σ  increases. 

At this point, we can identify that the MARIA and WISE 
techniques provide particular advantages when coping with 
volumetric targets, modelled as an assembly of random 
scatterers with a certain spread (see Fig. 2). Specifically, both, 
WCF-based and ML-inspired approaches perform resolution-
enhancement to a first estimate of the continuous PSP 
(retrieved using Capon). This is especially noticeable when the 
spread value σ  is such that, the conventional Capon 
beamforming approach is not able to differentiate the existence 
of multiple (three) local maxima. Also, we observe that both 
methods recover an outline of the backscattering vertical 
profile more similar to the expected (theoretical) one, in 
contrast to the other competing techniques, which is 
corroborated through the Fréchet distance measurements of 
Fig. 5.   

Next, we make use of a different distribution to model the 
echoes coming from the scatterers, gathered on each simulated 
data covariance matrix Y. The scatterers have equal 
reflectivity and are displaced along the height direction. 
Particularly, we refer to three Rayleigh distributions located at 

1 3z = −  m, 2 0 z = m and 3 4 z = m, correspondingly. A 
varying spread (scale parameter) 0.8 m 2.3 mσ≤ ≤  (Fig. 8 
shows two representative cases) and a noise power spectral 
density 0N = 0.01 are considered. 

The same TomoSAR focusing techniques as before are 
applied to recover the PSP for the respective cases. A high 
number of looks (J = 350) is chosen, for which Capon 
beamforming presents enhanced performance, as verified 
previously. 

TABLE IV 
AVERAGE PROCESSING TIME1  

TomoSAR Focusing Technique Processing Time in Seconds 
                         Capon                                           0.365164 
                            CS                  27.010265         
                        MARIA                                         3.420420 
                          WISE                                          3.296872 

1The average processing time refers to the retrieval of a single profile, 
performed in an Intel© Xeon© X7560 CPU at 2.27 GHz, using a single 
thread.   
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Fig. 6. Blue: Average among looks of the simulated signal. We refer to three Gaussian distributions, each one with spread 0.8σ =  m. The true positions of the 
respective phase-centers, for each individual distribution, are pointed out through three black circles.  Red: Vertical profile recovered after applying (a) MSF 
beamforming [3], [19]; (b) Capon [3], [7] – [9]; (c) wavelet-based CS [10], [11] with a sparsifying basis based on the Symlets 4 wavelet family with 3 levels of 
decomposition ( 1 2 0.5ττ = = ); (d) the MARIA technique in (44) after I = 6 iterations ( 0 0.01N = ); (e) the WISE method in (54) after  I = 5 iterations              

( 0 0.01N = ).  
 

 

 
(a) 
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(e) 

 
Fig. 7. Blue: Average among looks of the simulated signal. We refer to three Gaussian distributions, each one with spread 1.3σ =  m. The true positions of the 
respective phase-centers, for each individual distribution, are pointed out through three black circles. Red: Vertical profile recovered after applying (a) MSF 
beamforming [3], [19]; (b) Capon [3], [7] – [9]; (c) wavelet-based CS [10], [11] with a sparsifying basis based on the Symlets 4 wavelet family with 3 levels of 
decomposition ( 1 2 0.5ττ = = ); (d) the MARIA technique in (44) after I = 10 iterations ( 0 0.01N = ); (e) the WISE method in (54) after  I = 13 iterations          

( 0 0.01N = ). 
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Afterward, we compare the retrieved three most prominent 
local maxima against the expected (theoretical) local maxima. 
Keep in mind that the mean value (phase-center) of a Rayleigh 
distribution is not located at its maximum.  

For such a case, Fig. 9 compares the MSE between the 
estimated and actual positions of the three most prominent 
peaks, retrieved using the competing methods (Capon, CS and 
MARIA) and the proposed WISE for different spread values 
σ . Fig. 10 compares the Fréchet distance [32], [33], between 
the estimated and actual (theoretical) vertical profiles, 
correspondingly. 

Observe via Fig. 9 and Fig. 10 that, as previously, the MSE 
and Fréchet distance measurements increase as the scatterers, 

within each individual Rayleigh distribution, start mixing 
together. Notice also that all curves in Fig. 9 and Fig. 10 grow 
slower as the spread value σ  increases, in contrast to Fig. 4 
and Fig. 5, respectively. 

The Capon’s curve in Fig. 9 stops at the spread value of
1.4σ =  m, since later on such technique is not able to 

discriminate the presence of three local maxima. 
As expected, MARIA recovers worse MSE and Fréchet 

distance measurements in comparison to the results gotten 
from the scatterers following Gaussian distributions. On the 
other hand, CS remains as the technique with better 
performance on the retrieval of the location of the 
corresponding local maxima. 

 

 
(a) 

 

 

 
(b) 

 

Fig. 8. Distribution of 300 scatterers displaced along the height direction, following three Rayleigh distributions among  J = 350  independent looks, located at 

1 3z = −  m, 2 0z =  m and 3 4z =  m correspondingly, and with spread (scale parameter) of (a) 1.0σ =  m and (b) 2.0σ =  m, respectively. The theoretical 
distribution, for each case, is presented at the right side.  

 
 
 

 
 
 

Fig. 9. MSE between the estimated and actual positions of the three most 
prominent local maxima versus spread value σ . We refer to Rayleigh 
distributions to model the backscattering. Each point is the average of 100 
Monte-Carlo trials. 

Fig. 10. Fréchet distance between the estimated and the theoretical 
backscattering profiles versus spread value σ . We refer to Rayleigh 
distributions to model the backscattering. Each point is the average of 100 
Monte-Carlo trials. 
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Fig. 11. Blue: Average among looks of the simulated signal. We refer to three Rayleigh distributions, each one with spread 1.0σ =  m. The true positions of the 
respective phase-centers, for each individual distribution, are pointed out through three black circles, namely: -1.75 m, 1.25 m and 5.25 m, respectively.        
Red: Vertical profile recovered after applying (a) MSF beamforming [3], [19]; (b) Capon [3], [7] – [9]; (c) wavelet-based CS [10], [11] with a sparsifying basis 
based on the Symlets 4 wavelet family with 3 levels of decomposition ( 1 2 0.5ττ = = ); (d) the MARIA technique in (44) after  I = 5 iterations ( 0 0.01N = );   

(e) the WISE method in (54) after  I = 6 iterations ( 0 0.01N = ).  
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Fig. 12. Blue: Average among looks of the simulated signal. We refer to three Rayleigh distributions, each one with spread 1.0σ =  m. The true positions of the 
respective phase-centers, for each individual distribution, are pointed out through three black circles, namely: -0.50 m, 2.50 m and 6.5 m, respectively.          
Red: Vertical profile recovered after applying (a) MSF beamforming [3], [19]; (b) Capon [3], [7] – [9]; (c) wavelet-based CS [10], [11] with a sparsifying basis 
based on the Symlets 4 wavelet family with 3 levels of decomposition ( 1 2 0.5ττ = = ); (d) the MARIA technique in (44) after I = 10 iterations ( 0 0.01N = ); 

(e) the WISE method in (54) after  I = 9 iterations ( 0 0.01N = ).  
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The super-resolved WISE technique presents a similar 
behavior as earlier, showing more independence on how the 
scatterers are distributed along the height direction. This time, 
MARIA and WISE retrieve more similar results on the 
estimation of the local maxima positions, which we attribute 
to a poorer performance of MARIA rather than a significant 
improvement of WISE. Also, WISE presents the best Fréchet 
distance measurements, which translates into recovering an 
outline of the backscattering vertical profile more similar to 
the expected (theoretical) one. 

Finally, Fig.11 and Fig. 12 present, as before, the 
comparison of WISE in (61) against the most prominent non-
parametric competing methods (MSF in (10), Capon in (62), 
CS in (64) and MARIA in (60)) for two individual 
representative cases: (i) A volumetric target with spread of 

1.0σ = m (as depicted in Fig. 8a), for which Capon 
beamforming still distinguishes the presence of three local 
maxima; (ii) A volumetric target with spread of 2.0σ = m (as 
shown in Fig. 8b), for which Capon beamforming is not able to 
discriminate the presence of three local maxima. Notice that the 
true positions of the phase-centers, for each individual 
distribution, are pointed out through three black circles. 

The presented analyses confirm what is expected from the 
behavior of WISE, in comparison, especially, to the closest 
most competing MARIA method: the use of WISE is more 
suitable for scenarios where the observed data comes from 
scatterers following an explicitly non Gaussian distribution.    

In addition, we can come to an important conclusion, 
explained next. Both regularization techniques, MARIA and 
WISE, require of the proper setting of 0N  , which according 
to our model in (5), represents the power spectral density of 
the white noise power [3]. Nonetheless, in practice, this factor 
assumes the role of a regularization parameter.  
 For the given simulations we set 0N = 0.01, as originally 
defined to model the backscattering. However, looking at Fig. 
4 and Fig. 9, the fact that WISE retrieves worse results than its 
input Capon, means that the WISE solutions are not optimally 
regularized. This indicates that the value of 0N  is not properly 
chosen. Furthermore, being WISE an iterative procedure, it is 
likely that this factor needs to be updated at each iteration.  

We presume then that WISE can improve its performance 
by fine-tuning 0N  within formula (61). Having a similar 
structure, this also applies to MARIA in (60).    

The optimal selection of the regularization parameter 0N  is 
out of the scope of this article, since it requires of dedicated 
work. Such problem is to be tackled in a general way, 
independently of the regularization approach to be used, as 
suggested in [35]. 

Meanwhile, for the experiments reported next, we treat 0N  
now as a user specified regularization parameter, defined for 
each particular method. Notice that the assigned values are 
indicated in the figure captures.   

VIII. EXPERIMENTAL RESULTS 
The reported experimental results are obtained via 

processing L-band (0.226 m wavelength) data of the German 
Aerospace Center (DLR), acquired by the F-SAR airborne 

sensor at a nominal altitude above ground of 3720 m, over the 
forested test site of Froschham, Germany, in 2017. The 
acquisition constellation spans a horizontal synthetic aperture 
of 70 m comprising 15 tracks approximately evenly 
distributed. Thus, we make use of a stack of 15 single-look 
complex SAR images (Fig. 13 shows one image out of the 
stack) properly co-registered and phase flattened. 

In practice, regions with high air traffic, such as the one 
considered in this study, demand to operate over only one 
height level, so that the flight space is not blocked. Therefore, 
the acquisition constellation rather spans a horizontal synthetic 
aperture. 

The tomographic reconstruction is conducted as follows: 
several azimuth positions at a fixed range distance are selected 
as indicated by the yellow rectangle in Fig. 13. 

For the chosen area, with a slant-range distance of about 
4000 m between the master track and the targets, and a look 
angle of about 40°, the Fourier resolution [4] is 5.4 m when 
we consider all the passes. 

To demonstrate the feature-enhancement capabilities of the 
WCF-inspired regularization approach, in comparison to the 
other treated state-of-the-art competing techniques, we employ 
only half (L = 7) of the existing tracks, meaning a Fourier 
resolution of 12.6 m. Then, the retrieved results are validated 
with the tomogram obtained after applying MSF beamforming 
using all the available passes (L = 15), as shown in Fig. 14. 
Polarization HV is chosen in order to have fewer contributions 
from the ground surface and to emphasize the whole 
vegetation structure.  

Besides of showing the tomograms for the different cases, 
Fig. 14 also presents a comparison between the retrieved 
vertical profiles for a chosen azimuth position. We select the 
azimuth position at 155 m, since the presence of multiple 
phase-centers is detected in this zone. For each tomogram, the 
corresponding vertical profile is shown at right hand. The 
location among the tomogram, from where the vertical profile 
is taken, is depicted through a green vertical line crossing the 
tomogram at the chosen azimuth position (155 m). For an easy 
assessment, the outline of the vertical profile retrieved using 
MSF with all passes, is super-imposed onto the other 
corresponding plots, depicted via a dashed red line. 

 

 
  
Fig. 13. Polarimetric SAR image of the forested test site in Froschham, 
Germany, 2017 (Red: HH; Blue: HV; Green: VH). The area of interest is 
located within the yellow rectangle along azimuth. 

 
 



 18 

 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

(e) 

 
 

(f) 

 
 

 
Fig. 14. Retrieved HV tomograms and the corresponding vertical profile at the azimuth position 155 m, after applying: (a) MSF beamforming in (10) with L=15 
tracks; (b) MSF beamforming with L=7 tracks; (c) Capon in (62) with L=7 tracks; (d) wavelet-based CS in (64) with a sparsifying basis based on the Symlets 4 
wavelet family with 3 levels of decomposition and L=7 tracks ( 1 2 0.5ττ = = ); (e) the MARIA technique in (60) after I = 8 iterations with L=7 tracks                  

( 0 0.0045N = ); (f) the WISE method in (61) after I = 9 iterations with L=7 tracks ( 0 0.075N = ). We use a Boxcar filter with a 7 7×  pixels window to 
perform multi-looking on the array of data covariance matrices. The retrieved power is presented in a normalized (0 to 1) linear scale. For an easy assessment, 
the outline of the vertical profile retrieved using MSF with all passes, is superimposed onto the other corresponding plots, depicted via a dashed red line. 
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The  attainable  resolution  of  the  conventional TomoSAR-
adapted  DOA-based non-parametric  methods,  such  as  the 
MSF and Capon techniques, highly depends on the 
tomographic aperture [3], [4], [6]. Due to this constraint, as 
observed in Fig. 14(b) and 14(c), these techniques are not able 
to resolve two arbitrarily close scattering contributions with a 
reduced (limited) number of tracks. 

More sophisticated approaches as CS [10], [11] and 
MARIA [13], or the novel introduced WISE method, are 
capable to discriminate the contributions from the several 
phase-centers, since such methods are not constrained to the 
resolution of the sensor geometry, as they do not involve a 
conventional inversion of the spectrum [12]. This is validated 
through Fig. 14(d), 14(e) and 14(f), correspondingly. 
Nonetheless, as it is shown in Fig. 14(d), the wavelet-based 
CS technique retrieves higher ambiguity levels, which may 
translate into false detections. 
 Fig. 14(e) and 14(f) depict how the ML-inspired and the 
novel WCF-based regularization approaches, perform 
resolution-enhancement, with suppression of artifacts and 
ambiguity levels reduction, to an initial estimate of the 
continuous PSP, retrieved using the Capon beamforming 
technique, given by Fig. 14(c). Such statistical regularization 
approaches allow for the separation of multiple scattering 
contributions within each resolution cell. After convergence, 
they are able to recover an accurate location of the 
corresponding closely spaced local maxima, which is 
validated with the tomogram retrieved using MSF 
beamforming with all the available passes (Fig. 14(a)). Being 
non-parametric, it is important to remark, that both 
regularization approaches do not require any a priori 
information about the number of  backscattering  sources  that 
constitute the illuminated area, in contrary to other super-
resolved parametric estimation techniques as MUSIC [3], [4] 
or ESPRIT [8]. 
 In order to show the stability of the proposed method, we 
present the superposition of the vertical profiles along two 
(non-homogeneous) areas within the tomograms in Fig. 14. 
For each tomogram described in Fig. 14, Fig. 15 shows the 
super-imposed vertical profiles comprising the azimuth 
positions between 125 m and 175 m, whereas Fig. 16 
considers the azimuth positions between 225 m and 275 m. 

An important factor to take into account is the mixture of 
sources consequence of spatial multi-looking. In contrast to 
the numerical examples presented before, where a high 
number of independent realizations (looks) are simulated, in 
practice, TomoSAR is customarily treated as an ergodic 
process, meaning that its statistical properties are deduced 
from a single random realization. The latter usually translates 
into achieving multi-looking through the averaging of adjacent 
values among the set of data covariance matrices Y, i.e., using 
a Boxcar filter. 

The introduced WISE technique, along with MARIA, 
requires of a high number of looks for a better performance, 
since, by constructions, the first estimate [ ]0b̂  of the PSP b  is 
retrieved using Capon beamforming. The latter may lead to 
the spatial mixture of sources.  

In the experimental results given in Fig. 14, we perform 
multi-looking using a Boxcar filter with a 7 7×  pixels 

window on the array of data covariance matrices. Afterward, 
in order to show the mixture of sources as an effect of spatial 
multi-looking, we use now a Boxcar filter with a 15 15×  pixels 
window to recover the tomograms in Fig. 17. 

Fig. 17 shows the same tomograms retrieved previously in 
Fig. 14, but using a different window size (15 15×  pixels) to 
perform multi-looking via Boxcar filtering. The tomograms 
shown in Fig. 17 are recovered from the exactly same region 
as in Fig. 14, depicted by the yellow rectangle in Fig. 13.  

As one can observe, the tomographic slices in Fig. 17 
present a reduced resolution, in contrast to the tomograms 
given in Fig. 14, because of the spatial averaging. However, 
the presence of multiple local maxima is still detected, as 
shown through the comparison between the retrieved vertical 
profiles at the chosen azimuth position (155 m), for Fig. 14 
and Fig. 17, respectively.       

The simulation results in the previous section show that 
MARIA and the novel proposed WISE provide more 
information on the outline of the backscattering vertical 
profiles. For real-world scenarios, the WISE method in (61) is 
expected to perform better in this subject, since such approach 
is more flexible to the pdf’s Gaussian assumption of the 
observed data (which may be characterized with a different 
pdf), in contrast to the MARIA (60) technique.  

The latter is especially noticeable through the reported 
experimental results in Fig. 17(e) and 17(f), where we can 
observe that the retrieved vertical profiles of the MARIA 
approach are composed of Gaussian like reconstructions, and 
the retrievals of the WISE technique tend to be more similar to 
the results gotten using MSF beamforming [3], [17], with all 
the available tracks, as shown in Fig. 17(a). Our impression is 
then that high multi-looking also aids WISE to this subject. 

Consequently, in order to achieve high multi-looking, 
preventing the spatial mixture of sources, rather than using a 
Boxcar filter, we recommend the use of non-local spatially 
adaptive filtering methods, which enhance the estimation of 
the covariance matrices, improving the scatterer separation in 
layover areas thanks to their smoothing and edge-preserving 
properties. However, this topic is out of the scope of this 
article, but the reader may refer to [36], [37].  

The work presented in [38] explains how to characterize the 
forest structure from the vegetation layers that compose it, 
reflected as local maxima in the tomographic profiles. The 
presence or absence of multiple maxima in certain zones, 
impacts directly on the forest structure measurements. Thus, 
enhanced resolution is desired to detect the corresponding 
closely spaced local maxima. As it has been corroborated, 
MARIA and WISE ease such efforts by providing enhanced-
resolution and by retrieving an accurate location of the peaks.  

Recall that, as other super-resolved techniques, the 
addressed MARIA and WISE statistical regularization 
approaches trade radiometric accuracy for enhanced-
resolution. This is clearly noticeable, since both iterative 
procedures involve several matrix-vector operations, which 
include matrix inversions. Consequently, for comparison 
purposes, we refer to a (0 to 1) normalized pseudo-power in 
the plots given in Fig. 14 - Fig. 17. 
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Fig. 15. Superposition of fifty vertical profiles comprising the azimuth positions between 125 m and 175 m within the tomograms in Fig. 14: (a) MSF in (10) 
with L=15 tracks; (b) MSF with L=7 tracks; (c) Capon in (62) with L=7 tracks; (d) wavelet-based CS in (64) with  L=7 tracks; (e) MARIA in (60) with L=7 
tracks; WISE in (61) with L=7 tracks.   
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Fig. 16. Superposition of fifty vertical profiles comprising the azimuth positions between 225 m and 275 m within the tomograms in Fig. 14: (a) MSF in (10) 
with L=15 tracks; (b) MSF with L=7 tracks; (c) Capon in (62) with L=7 tracks; (d) wavelet-based CS in (64) with  L=7 tracks; (e) MARIA in (60) with L=7 
tracks; WISE in (61) with L=7 tracks.   
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Fig. 17. Retrieved HV tomograms and the corresponding vertical profile at the azimuth position 155 m, after applying: (a) MSF beamforming in (10) with L=15 
tracks; (b) MSF beamforming with L=7 tracks; (c) Capon in (62) with L=7 tracks; (d) wavelet-based CS in (64) with a sparsifying basis based on the Symlets 4 
wavelet family with 3 levels of decomposition and L=7 tracks ( 1 2 0.5ττ = = ); (e) the MARIA technique in (60) after I = 8 iterations with L=7 tracks                 

( 0 0.0045N = ); (f) the WISE method in (61) after I = 9 iterations with L=7 tracks ( 0 0.075N = ). These tomograms correspond to the exactly same region as 
in Fig. 14, depicted by the yellow rectangle in Fig. 13, but using a 15 15×  pixels window to perform multi-looking via Boxcar filtering. The retrieved power is 
presented in a normalized (0 to 1) linear scale. . For an easy assessment, the outline of the vertical profile retrieved using MSF with all passes, is superimposed 
onto the other corresponding plots, depicted via a dashed red line. 
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For other methodologies and applications, normalizing each 
vertical profile with respect to one could be misleading, giving 
equal importance to mechanisms with different reflectivity. 
Subsequently, Fig. 18 shows the same tomograms as in Fig. 
14, but normalizing them with respect to the trace (span) of 
the covariance matrices and in a dB scale. We leave to the 
reader the suitability of the presented regularization techniques 
to the particular applications. 

With the addressed considerations, the introduced method is 
presented as a feasible candidate for a practical 
implementation in the perspective of future airborne and 
spaceborne TomoSAR missions. 

IX. CONCLUDING REMARKS 
With the aim of solving the ill-conditioned nonlinear 

TomoSAR inverse problem, this paper introduces WISE, a 
novel non-parametric statistical regularization approach based 
on the WCF criterion. The novel technique relaxes the pdf’s 
Gaussian assumption of the observed data, in contrast to the 
ML-inspired approaches, as MARIA, which consider 
Gaussian statistics.  

The WISE algorithm allows for its application to man-made 
(urban) and natural scenes; nevertheless, since we refer to a 
model better adapted for the representation of natural 
environments, we expect improved performance in such 
scenarios, i.e., rough surfaces and volumetric targets as 
forests. 

First, we present the mathematical background of the most 
prominent regularization techniques, from which WISE is 
derived. These techniques have been assembled into two main 
groups: (i) deterministic descriptive regularization techniques 
(CLS and WCLS), inspired by the Tikhonov’s regularization 
theory; and (ii) statistical regularization methods (BMR, ML and 
WCF), in the context of the statistical decision-making theory. 
As a consequence of this analysis, WISE is yielded as an 
extension of Capon beamforming and with a similar structure to 
MARIA, which is derived here in a more convenient fashion. 

At this point, we identify that WISE is a solution dependent 
technique, which requires of a priori information on the PSP. 
Furthermore, it involves several matrix-vector operations, 
including matrix inversions; therefore, keep in mind that the 
radiometric accuracy is not preserved. 

Next, the iterative adaptive implementation of WISE is given. 
This implementation is considered as a sub-optimal version of 
the WCF solver, since the actual PSP is unknown and needs to 
be firstly estimated. For such purpose, by constructions, the 
conventional Capon beamforming technique is employed. 

Capon beamforming is widely used to perform focusing of the 
TomoSAR data, since it provides enhanced resolution when a 
high number of looks is processed. Recall that, due to the 
involved inversions of the data covariance matrices, the rank-
deficiencies of such matrices must be avoided.  

Be aware that, technically, multi-looking is commonly 
achieved through the averaging of adjacent values via Boxcar 
filtering, which may lead to the spatial mixture of sources. For 

this reason, the use of non-local spatially adaptive filtering 
methods is recommended instead. 

Afterward, the capabilities of WISE are demonstrated through 
numerical examples, in comparison to the most prominent non-
parametric competing techniques MSF, Capon, CS and MARIA.  

From such analyses, we observe that MSF and Capon are not 
always able to discriminate the presence of multiple local 
maxima due to their inferior attainable resolution. 

Also, when the PSP is properly modelled using Gaussian 
statistics, MARIA, the closest competing method, retrieves better 
results than WISE on the retrieval of the Fréchet distance 
measurements and local maxima positions. However, the 
performance of MARIA worsens when we consider different 
(non-Gaussian) statistics. 

Recall that we use the Fréchet distance to compare the 
recovered and expected (theoretical) outline of the backscattering 
vertical profiles.    

In general, CS has a better performance on the retrieval of 
the local maxima positions, but with a higher computational 
burden. On the other hand, CS presents the worst Fréchet 
distance measurements. 

As expected, WISE shows more independence on how the 
scatterers are distributed along the height direction. It retrieves 
similar results to MARIA on the estimation of the local 
maxima positions, when non-Gaussian statistics are 
considered. Moreover, for such a case, WISE retrieves the best 
Fréchet distance measurements. 

Next, from the inspection of the simulation results, we infer 
that factor 0N , which represents the power spectral density of 
the white noise power in the TomoSAR signal model, should 
be rather treated as a user specified regularization parameter. 
We presume that WISE can improve its performance by fine-
tuning 0N . 

One can conclude then, that the use of WISE is more suitable 
for scenarios where the pdf of the observed data is explicitly non 
Gaussian. Such could be the case of non-uniform sparse forests 
as tropical forests, known for its dense canopies of vegetation 
that form multiple layers; or the subsurface imaging of ice 
structures as glaciers, which normally have different ice 
thickness among the covered area, along with different 
subsurface and subglacial conditions, and meltwater discharge 
rates. 

Later on, the behavior of WISE and the other competing 
techniques is validated using real data. For this purpose, we 
refer to a natural environment, namely, a forested scene.  

As it has been verified, WISE presents the following 
advantages: (i) being non-parametric, it is not necessary to know 
beforehand the number of sources sharing the same resolution 
cell; (ii) it recovers resolution-enhanced tomographic profiles 
with a reduced (limited) number of passes; (iii) it retrieves 
reduced ambiguity levels; (iv) it performs suppression of 
artifacts; (v) it provides meaningful information on the outline of 
the actual backscattering vertical profiles; (vi) it requires much 
less computation time in contrast to CS.  



 23 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 
 
Fig. 18. Retrieved HV tomograms after applying: (a) MSF beamforming in (10) with L=15 tracks; (b) MSF beamforming with L=7 tracks; (c) Capon in (62) 
with L=7 tracks; (d) wavelet-based CS in (64) with a sparsifying basis based on the Symlets 4 wavelet family with 3 levels of decomposition and L=7 tracks        
( 1 2 0.5ττ = = ); (e) the MARIA technique in (60) after I = 8 iterations with L=7 tracks ( 0 0.0045N = ); (f) the WISE method in (61) after I = 9 iterations with 

L=7 tracks ( 0 0.075N = ). We use a Boxcar filter with a 7 7×  pixels window to perform multi-looking on the array of data covariance matrices. These 
tomograms correspond to the exactly same region as in Fig. 14, depicted by the yellow rectangle in Fig. 13. The retrieved power is presented in a dB scale; it has 
been normalized with respect to the trace (span) of the corresponding covariance matrices.  
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APPENDIX 
This section gathers all the differentiation rules employed to 

derive the addressed regularization approaches. Particularly, 
the CLS (13) and WCLS (20) solvers utilize the following 
formulas [24, Appendix A.7], 

 

 +∂
=

∂
v u 0

u
,                            (A.1) 

 

 2+∂
=

∂
u v v

u
,                           (A.2) 

 

2+∂
=

∂
u Vu Vu

u
.                         (A.3) 

 
Notice that, in contrast to [24, Appendix A.7], we consider V 
as a complex valued matrix, and vectors u and v as complex 
valued vectors. For such a case, expression (A.368) in [24, 
Appendix A.7] becomes equations (A.1) and (A.2).    

The BMR solution in (29) is obtained using the next 
differentiation rule [39, Appendix], 
  

 { }tr 2+∂
=

∂
WUW WU

W
,                  (A.4) 

 
where U and W are arbitrary complex valued square matrices. 

The derivative expressions in (38) and (39), employed to 
produce the assessed ML-inspired approach in (44), make use 
of the matrix differentiation formulas [17], [18], [24, 
Appendix A.7] 
 

 { } 1ln det tr −∂ ∂ =  
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U U U
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that hold for an arbitrary complex valued invertible matrix U, 
which is function of vector v; and the formula 

( )∂
=

∂
D v I

v
.                          (A.7) 

 
 Finally, the WCF-based solution in (51) considers the next 
differentiation rule [24, Appendix A.7],   
 

 { } { }tr tr + + +
+

∂ ∂
=

∂
=

∂
V

V V
UVW U W U W ,       (A.8) 

 
in which matrices U and W (not necessarily square matrices) 
are not function of matrix V. 
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