elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Spatiotemporal model for benchmarking causal discovery algorithms

Tibau, Xavier-Andoni und Reimers, Christian und Eyring, Veronika und Denzler, Joachim und Reichstein, Markus und Runge, Jakob (2020) Spatiotemporal model for benchmarking causal discovery algorithms. EGU General Assembly 2020, 2020-05-04 - 2020-05-08, Austria. (eingereichter Beitrag)

[img] PDF
299kB

Kurzfassung

We propose a spatiotemporal model system to evaluate methods of causal discovery. The use of causal discovery to improve our understanding of the spatiotemporal complex system Earth has become widespread in recent years (Runge et al., Nature Comm. 2019). A widespread application example are the complex teleconnections among major climate modes of variability. The challenges in estimating such causal teleconnection networks are given by (1) the requirement to reconstruct the climate modes from gridded climate fields (dimensionality reduction) and (2) by general challenges for causal discovery, for instance, high dimensionality and nonlinearity. Both challenges are currently being tackled independently. Both dimensionality reduction methods and causal discovery have made strong progress in recent years, but the interaction between the two has not yet been much tackled so far. Thanks to projects like CMIP a vast amount of climate data is available. In climate models climate modes of variability emerge as macroscale features and it is challenging to objectively benchmark both dimension reduction and causal discovery methods since there is no ground truth for such emergent properties. We propose a spatiotemporal model system that encodes causal relationships among well-defined modes of variability. The model can be thought of as an extension of vector-autoregressive models well-known in time series analysis. This model provides a framework for experimenting with causal discovery in large spatiotemporal models. For example, researchers can analyze how the performance of an algorithm is affected under different methods of dimensionality reduction and algorithms for causal discovery. Also challenging features such as non-stationarity and regime-dependence can be modelled and evaluated. Such a model will help the scientific community to improve methods of causal discovery for climate science. Runge, J., S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M. Kretschmer, M. D. Mahecha, J. Muñoz-Marı́, E. H. van Nes, J. Peters, R. Quax, M. Reichstein, M. Scheffer, B.Schölkopf, P. Spirtes, G. Sugihara, J. Sun, K. Zhang, and J. Zscheischler (2019). Inferring causation from time series in earth system sciences. Nature Communications 10 (1), 2553.

elib-URL des Eintrags:https://elib.dlr.de/133888/
Dokumentart:Konferenzbeitrag (Anderer)
Titel:Spatiotemporal model for benchmarking causal discovery algorithms
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tibau, Xavier-AndoniGerman Aerospace Center (DLR), Institute of Data Science, Jena, Germanyhttps://orcid.org/0000-0002-7239-1421NICHT SPEZIFIZIERT
Reimers, ChristianComputer Vision Group, Friedrich-Schiller-Universität Jena, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Eyring, VeronikaInstitute for Atmospheric Physics, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Denzler, JoachimComputer Vision Group, Friedrich-Schiller-Universität Jena, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reichstein, MarkusMax-Planck-Institute for Biogeochemistry, Jena, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Runge, JakobGerman Aerospace Center (DLR), Institute of Data Science, Jena, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:eingereichter Beitrag
Stichwörter:Spatiotemporal, benchmark, causal discovery
Veranstaltungstitel:EGU General Assembly 2020
Veranstaltungsort:Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 Mai 2020
Veranstaltungsende:8 Mai 2020
Veranstalter :EGU
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Hinterlegt von: Tibau Alberdi, Xavier Andoni
Hinterlegt am:06 Feb 2020 13:55
Letzte Änderung:24 Jun 2024 12:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.