elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Real-Time In-Hand Object Tracking and Sensor Fusion for Advanced Robotic Manipulation

Stoiber, Manuel (2019) Real-Time In-Hand Object Tracking and Sensor Fusion for Advanced Robotic Manipulation. DLR-Interner Bericht. DLR-IB-RM-OP-2020-7. Masterarbeit. Technical University of Munich. 101 S.

[img] PDF - Nur DLR-intern zugänglich
16MB

Kurzfassung

In recent years, continuous research has led to robotic hands that are perfectly suitable for in-hand manipulation. To execute such tasks and for example move a pen, the pose of the object is required. While a wide range of algorithms is available to track objects visually, most of those methods suffer if large parts of the object are occluded, which is typically the case during in-hand manipulation. To provide a robust pose estimate under such circumstances, it is desirable to fuse vision-based results with additional information from the robot hand, such as joint angles and torques. This, however, requires an estimate of the tracker’s uncertainty, which is typically not provided by state-of-the-art algorithms. In order to address those challenges, this thesis proposes a novel probabilistic tracking framework that not only provides an estimate of the current pose but also of its uncertainty. It employs both an ICP-based modality to incorporate depth information and a region-based modality to utilise contour information from RGB images. For the region-based modality, the current state of the art is significantly extended with the development of a probabilistic model that features ray correspondences and an efficient scale space implementation. Additionally, a novel mathematical proof is derived that shows that the new modality has Gaussian properties. For the resulting multi-modality tracker, a real-time capable implementation is created that considers occlusions using both explicit and implicit information from rendered masks and depth images. The tracker is integrated on the DLR robot system David and incorporated in the existing EKF-based in-hand localisation framework. Finally, a thorough validation in a wide range of experiments is conducted to evaluate all aspects of the tracker’s performance.

elib-URL des Eintrags:https://elib.dlr.de/133861/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Real-Time In-Hand Object Tracking and Sensor Fusion for Advanced Robotic Manipulation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stoiber, ManuelManuel.Stoiber (at) dlr.dehttps://orcid.org/0000-0002-0762-9288NICHT SPEZIFIZIERT
Datum:15 Mai 2019
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:101
Status:veröffentlicht
Stichwörter:6DoF object tracking, Gaussian uncertainty estimation, sensor fusion
Institution:Technical University of Munich
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Stoiber, Manuel
Hinterlegt am:08 Dez 2020 14:49
Letzte Änderung:08 Dez 2020 14:49

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.