Kruspe, Anna (2019) Few-shot tweet detection in emerging disaster events. AI+HADR Workshop @ NeurIPS, 2019-12-13, Vancouver, Canada.
PDF
218kB |
Kurzfassung
Social media sources can provide crucial information in crisis situations, but discovering relevant messages is not trivial. Methods have so far focused on universal detection models for all kinds of crises or for certain crisis types (e.g.floods). Event-specific models could implement a more focused search area, but collecting data and training new models for a crisis that is already in progress is costly and may take too much time for a prompt response. As a compromise, manually collecting a small amount of example messages is feasible. Few-shot models can generalize to unseen classes with such a small handful of examples, and do not need be trained anew for each event. We compare how few-shot approaches(matching networks and prototypical networks) perform for this task. Since this is essentially a one-class problem, we also demonstrate how a modified one-class version of prototypical models can be used for this application
elib-URL des Eintrags: | https://elib.dlr.de/133225/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||
Titel: | Few-shot tweet detection in emerging disaster events | ||||||||
Autoren: |
| ||||||||
Datum: | Dezember 2019 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | social media, twitter, few-shot learning, one-class models, disaster, crisis | ||||||||
Veranstaltungstitel: | AI+HADR Workshop @ NeurIPS | ||||||||
Veranstaltungsort: | Vancouver, Canada | ||||||||
Veranstaltungsart: | Workshop | ||||||||
Veranstaltungsdatum: | 13 Dezember 2019 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||
Standort: | Jena | ||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||
Hinterlegt von: | Kruspe, Anna | ||||||||
Hinterlegt am: | 23 Jan 2020 15:40 | ||||||||
Letzte Änderung: | 24 Apr 2024 20:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags