elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics

Sánchez-Monreal, Juan und García-Salaberri, Pablo A. und Vera, Marcos (2018) A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics. Applied Energy, 251, Seite 113264. Elsevier. doi: 10.1016/j.apenergy.2019.05.067. ISSN 0306-2619.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
1MB

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0306261919309134

Kurzfassung

This paper presents an isothermal, single-phase model for direct ethanol fuel cells. The ethanol electro-oxidation reaction is described using a detailed kinetic model that is able to predict anode polarization and product selectivity data. The anode kinetic model is coupled to a one-dimensional (1D) description for mass and charge transport across the membrane electrode assembly, which accounts for the mixed potential induced in the cathode catalyst layer by the crossover of ethanol and acetaldehyde. A simple 1D advection model is used to describe the spatial variation of the concentrations of the different species as well as the output and parasitic current densities along the flow channels. The proposed 1D + 1D model includes two adjustable parameters that are fitted by a genetic algorithm in order to reproduce previous experimental data. The calibrated model is then used to investigate the consumption of ethanol and the production, accumulation and consumption of acetaldehyde along the flow channels, which yields the product selectivity at different channel cross-sections. A parametric study is also presented for varying ethanol feed concentrations and flow rates. The results obtained under ethanol starvation conditions highlight the role of acetaldehyde as main free intermediate, which is first produced and later consumed once ethanol is fully depleted. The detailed kinetic description of the ethanol oxidation reaction enables the computation of the four efficiencies (i.e., theoretical, voltage, faradaic, end energy utilization) that characterize the operation of direct ethanol fuel cells, thus allowing to present overall fuel efficiency vs. cell current density curves for the first time.

elib-URL des Eintrags:https://elib.dlr.de/133197/
Dokumentart:Zeitschriftenbeitrag
Titel:A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sánchez-Monreal, Juanjuan.sanchezmonreal (at) dlr.dehttps://orcid.org/0000-0002-9991-435XNICHT SPEZIFIZIERT
García-Salaberri, Pablo A.pagsalab (at) ing.uc3m.eshttps://orcid.org/0000-0002-3918-5415NICHT SPEZIFIZIERT
Vera, Marcosmarcos.vera (at) uc3m.esNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 Oktober 2018
Erschienen in:Applied Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:251
DOI:10.1016/j.apenergy.2019.05.067
Seitenbereich:Seite 113264
Verlag:Elsevier
ISSN:0306-2619
Status:veröffentlicht
Stichwörter:Direct ethanol PEM fuel cells, Detailed EOR kinetics, Modeling, Product selectivity, Faradic efficiency, Energy utilization
HGF - Forschungsbereich:Energie
HGF - Programm:Speicher und vernetzte Infrastrukturen
HGF - Programmthema:Brennstoffzellen
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse (Brennstoffzellen) (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Elektrochemische Energietechnik
Hinterlegt von: Sanchez Monreal, Juan
Hinterlegt am:07 Jan 2020 12:57
Letzte Änderung:07 Jan 2020 12:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.