elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

EFFICIENT SURROGATE MODEL CONSTRUCTION FOR LARGE DATA SETS USING BAYESIAN LEARNING

Maruyama, Daigo und Görtz, Stefan und Coggon, Simon (2018) EFFICIENT SURROGATE MODEL CONSTRUCTION FOR LARGE DATA SETS USING BAYESIAN LEARNING. UNCECOMP 2019, 2019-06-24 - 2019-06-26, Crete, Greece. (nicht veröffentlicht)

[img] PDF
118kB

Kurzfassung

Surrogate models have become a popular choice to enable the inclusion of high-dimensional, physics-based computational models in time-critical processes such as design, optimization and uncertainty quantification. Among the vast amount of different surrogate modeling strategies Kriging is one of the most promising offering accurate and rapid predictions between given sample points. However, to capture the underlying high-dimensional system behavior for complex engineering tasks, such as computational fluid dynamics, thousands to millions of sample points might be necessary. Thus, the computational cost for constructing the Kriging model can no longer be neglected since it requires iteratively solving linear systems – each of complexity cubic proportional to the number of samples – during the so-called hyperparameter tuning. In this work an efficient method for constructing Kriging models is proposed to mitigate the computational bottleneck caused by large data sets. Instead of working on the whole data set at once the samples are divided into subsets and a Bayesian learning strategy [1] is applied. Samples are partitioned in subsets each of them retaining the uniformity (low-discrepancy) of the initial data sets. The achieved reduction in computational cost is at least square proportional to the number of partitions and offers the potential of being cubic proportional when additionally solving the arising smaller linear systems in a parallel fashion. Results are presented for an analytical test case and for a large aerodynamic data set which was computed using the DLR-TAU code [2]. After partitioning the data a drastic reduction of computational cost is achieved without barely any impact on the prediction accuracy. Moreover, the developed method can be extended for other kernelized regression models such as Radial Basis Function, Co-Kriging and gradientenhanced Kriging (GEK) [3,4]. Especially GEK shows excellent compatibility with the proposed method once an adjoint solver [2] is available. Overall, the bottleneck of the huge computational cost needed during the model construction for the hyperparameter tuning can be drastically decreased by the presented Bayesian learning strategy. References [1] C.M. Bishop, Pattern Recognition and Machine Learning (information science and statistics). Springer, 2007. [2] D. Schwamborn, T. Gerhold, R. Heinrich, The DLR TAU-code: Recent applications in research and industry, invited lecture, in: P. Wesseling, E. Oate, J. Priaux (Eds.), Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006), The Netherlands, 2006. [3] Z.H. Han, S. Görtz, R. Zimmermann, Improving Variable-Fidelity Surrogate modeling via GradientEnhanced Kriging and a Generalized hybrid Bridge Function. Journal of Aerospace Science and Technology, Vol. 25, Issue 1. 2013. [4] Z.H. Han, Y. Zhang, C.X. Song, K.S. Zhang, Weighted Gradient-Enhanced Kriging for High-Dimensional Surrogate Modeling and Design Optimization. AIAA Journal, Vol. 55, No 12. 2017.

elib-URL des Eintrags:https://elib.dlr.de/132799/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:EFFICIENT SURROGATE MODEL CONSTRUCTION FOR LARGE DATA SETS USING BAYESIAN LEARNING
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Maruyama, Daigodaigo.maruyama (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Görtz, Stefanstefan.görtz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Coggon, SimonSimon.Coggon (at) airbus.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2018
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:nicht veröffentlicht
Stichwörter:Surrogate model, Kriging, Bayesian sequential learning, low-discrepancy sampling
Veranstaltungstitel:UNCECOMP 2019
Veranstaltungsort:Crete, Greece
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:24 Juni 2019
Veranstaltungsende:26 Juni 2019
Veranstalter :ECCOMAS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Maruyama, Daigo
Hinterlegt am:07 Jan 2020 10:56
Letzte Änderung:24 Apr 2024 20:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.