elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning based Defect Classification in X-ray Images of Weld Tubes (Masterarbeit)

Rajan, Sarvesh Sundar (2019) Deep Learning based Defect Classification in X-ray Images of Weld Tubes (Masterarbeit). DLR-Interner Bericht. DLR-IB-BT-AU-2019-209. Masterarbeit. Technische Universität Chemnitz. 94 S.

[img] PDF
33MB

Kurzfassung

n the scheme of Non Destructive Testing (NDT), defect detection is an important process. Traditional image processing techniques have successfully been used for defect recognition. Usage of machine learning techniques is still in the initial stages of development. Convolution Neural Networks (CNN) is widely used for object classification one such scenario is defect classification in weld tubes. With the advent of deep learning techniques such as transfer learning, we can transfer knowledge gained in one domain successfully into other. Pre-trained models successfully learn features from large scale datasets that can be used for in domains where there is lack of data. The aim of this work is to help a manual inspector in recognition of defects on the weld tubes. With a given set of images, we proceed by forming unique pipeline architecture for automatic defect ecognition. The research in this thesis focuses on extraction of welds using mage segmentation techniques, creating a dataset of defects and using it to on pre-trained Convolution Neural Networks of VGG16, VGG19, Inception V3 and ResNet101. We evaluate the models on different metrics finding the best suited model for the created dataset. Further a prototype sliding window solution is used to find defects over the extracted weld region. We also present the limitations of this approach and suggest what could be modified as part of the future scope.

elib-URL des Eintrags:https://elib.dlr.de/132639/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Deep Learning based Defect Classification in X-ray Images of Weld Tubes (Masterarbeit)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rajan, Sarvesh Sundarsarveshrajan04 (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2019
Referierte Publikation:Ja
Open Access:Ja
Seitenanzahl:94
Status:veröffentlicht
Stichwörter:Convolution Neural Network, Image Segmentation, Transfer Learning, Template Matching
Institution:Technische Universität Chemnitz
Abteilung:Dept. of Computer Science, Chair of Computer Engineering
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturen und Werkstoffe (alt)
Standort: Augsburg
Institute & Einrichtungen:Institut für Bauweisen und Strukturtechnologie > Automation und Produktionstechnologie
Institut für Bauweisen und Strukturtechnologie
Hinterlegt von: Schuster, Dr.-Ing. Alfons
Hinterlegt am:17 Dez 2019 10:45
Letzte Änderung:07 Aug 2023 17:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.