Shi, Yilei und Li, Qingyu und Zhu, Xiao Xiang (2020) Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 159, Seiten 184-197. Elsevier. doi: 10.1016/j.isprsjprs.2019.11.004. ISSN 0924-2716.
PDF
- Verlagsversion (veröffentlichte Fassung)
52MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S092427161930259X
Kurzfassung
Automatic building extraction from optical imagery remains a challenge due to, for example, the complexity ofbuilding shapes. Semantic segmentation is an efficient approach for this task. The latest development in deep convolutional neural networks (DCNNs) has made accurate pixel-level classification tasks possible. Yet onecentral issue remains: the precise delineation of boundaries. Deep architectures generally fail to produce fine-grained segmentation with accurate boundaries due to their progressive down-sampling. Hence, we introduce ageneric framework to overcome the issue, integrating the graph convolutional network (GCN) and deep struc-tured feature embedding (DSFE) into an end-to-end workflow. Furthermore, instead of using a classic graphconvolutional neural network, we propose a gated graph convolutional network, which enables the refinement of weak and coarse semantic predictions to generate sharp borders and fine-grained pixel-level classification.Taking the semantic segmentation of building footprints as a practical example, we compared different feature embedding architectures and graph neural networks. Our proposed framework with the new GCN architectureoutperforms state-of-the-art approaches. Although our main task in this work is building footprint extraction, theproposed method can be generally applied to other binary or multi-label segmentation tasks.
elib-URL des Eintrags: | https://elib.dlr.de/132448/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Building segmentation through a gated graph convolutional neural network with deep structured feature embedding | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Januar 2020 | ||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 159 | ||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2019.11.004 | ||||||||||||||||
Seitenbereich: | Seiten 184-197 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | building extraction, semantic segmentation, graph model, gated convoluational neural networks. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||
Hinterlegt am: | 06 Dez 2019 16:50 | ||||||||||||||||
Letzte Änderung: | 23 Okt 2023 13:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags