Zhu, Yue and Geiß, Christian and So, Emily (2019) Using deep neural networks for predictive modelling of informal settlements in the context of flood risk. In: Journal of Physics: Conference Series, 1343, pp. 1-6. CISBAT 2019 – International Scientific Conference - Climate Resilient Cities - Energy Efficiency & Renewables in the Digital Era, 2019-09-04 - 2019-09-06, Lausanne, Switzerland. doi: 10.1088/1742-6596/1343/1/012032. ISSN 1742-6588.
Full text not available from this repository.
Official URL: https://iopscience.iop.org/article/10.1088/1742-6596/1343/1/012032/meta
Abstract
Global climate change has substantially increased the risks of cities being adversely affected by natural hazards such as floods. Among the inhabitants of cities at risk, residents dwelling in informal settlements are the most vulnerable group. To identify the future exposure of informal settlements, we adopt a data-driven model from the machine learning domain to anticipate the growth patterns of formal and informal settlements in flood-prone areas. The potential emergence of informal settlements in Shenzhen, China, is predicted by the proposed method. Then, through an analysis of the flood susceptibility of the predicted informal settlement areas, the emerging vulnerability of Shenzhen towards flooding is revealed.
Item URL in elib: | https://elib.dlr.de/132310/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Using deep neural networks for predictive modelling of informal settlements in the context of flood risk | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2019 | ||||||||||||||||
Journal or Publication Title: | Journal of Physics: Conference Series | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Volume: | 1343 | ||||||||||||||||
DOI: | 10.1088/1742-6596/1343/1/012032 | ||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||
ISSN: | 1742-6588 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | climate-resilient cities, neural networks, land use prediction, informal settlements, flood susceptibility. | ||||||||||||||||
Event Title: | CISBAT 2019 – International Scientific Conference - Climate Resilient Cities - Energy Efficiency & Renewables in the Digital Era | ||||||||||||||||
Event Location: | Lausanne, Switzerland | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 4 September 2019 | ||||||||||||||||
Event End Date: | 6 September 2019 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||
Deposited On: | 06 Dec 2019 19:46 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:35 |
Repository Staff Only: item control page