Zhu, Yue und Geiß, Christian und So, Emily (2019) Using deep neural networks for predictive modelling of informal settlements in the context of flood risk. In: Journal of Physics: Conference Series, 1343, Seiten 1-6. CISBAT 2019 – International Scientific Conference - Climate Resilient Cities - Energy Efficiency & Renewables in the Digital Era, 2019-09-04 - 2019-09-06, Lausanne, Switzerland. doi: 10.1088/1742-6596/1343/1/012032. ISSN 1742-6588.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://iopscience.iop.org/article/10.1088/1742-6596/1343/1/012032/meta
Kurzfassung
Global climate change has substantially increased the risks of cities being adversely affected by natural hazards such as floods. Among the inhabitants of cities at risk, residents dwelling in informal settlements are the most vulnerable group. To identify the future exposure of informal settlements, we adopt a data-driven model from the machine learning domain to anticipate the growth patterns of formal and informal settlements in flood-prone areas. The potential emergence of informal settlements in Shenzhen, China, is predicted by the proposed method. Then, through an analysis of the flood susceptibility of the predicted informal settlement areas, the emerging vulnerability of Shenzhen towards flooding is revealed.
elib-URL des Eintrags: | https://elib.dlr.de/132310/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Using deep neural networks for predictive modelling of informal settlements in the context of flood risk | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | Journal of Physics: Conference Series | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 1343 | ||||||||||||||||
DOI: | 10.1088/1742-6596/1343/1/012032 | ||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||
ISSN: | 1742-6588 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | climate-resilient cities, neural networks, land use prediction, informal settlements, flood susceptibility. | ||||||||||||||||
Veranstaltungstitel: | CISBAT 2019 – International Scientific Conference - Climate Resilient Cities - Energy Efficiency & Renewables in the Digital Era | ||||||||||||||||
Veranstaltungsort: | Lausanne, Switzerland | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 4 September 2019 | ||||||||||||||||
Veranstaltungsende: | 6 September 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||||||
Hinterlegt am: | 06 Dez 2019 19:46 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags