Wu, Xin und Hong, Danfeng und Ghamisi, Pedram und Li, Wei und Tao, Ran (2019) LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898673.
|
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8898673
Kurzfassung
In this paper, we propose to extract the multi-scaled and rotation-insensitive deep features to address the issues of object multi-solutions and rotations in geospatial object detection. To this end, we develop a novel object detection framework where a rotation-insensitive convolution neural network is applied for extracting multi-scaled and directioninsensitive feature representation and then the learned features can be fed into the ensemble classifier learning with fast feature pyramid. Such a non-end-to-end learning strategy intuitively reduces the computational cost without the additional performance loss, yielding an effective and efficient light-weight object detection framework. Experimental results conducted on the NWPU VHR-10 dataset demonstrate that the proposed framework outperforms several state-ofthe-art baselines.
| elib-URL des Eintrags: | https://elib.dlr.de/132297/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
| Titel: | LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2019 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/IGARSS.2019.8898673 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1462-1465 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Deep learning, direction-insensitive, geospatial object detection, light-weight, multi-scaled, optical remote sensing imagery. | ||||||||||||||||||||||||
| Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||||||||||
| Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||||||||||
| Veranstaltungsende: | 2 August 2019 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
| Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||||||
| Hinterlegt am: | 05 Dez 2019 16:05 | ||||||||||||||||||||||||
| Letzte Änderung: | 08 Aug 2025 10:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags