Wu, Xin und Hong, Danfeng und Ghamisi, Pedram und Li, Wei und Tao, Ran (2019) LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898673.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8898673
Kurzfassung
In this paper, we propose to extract the multi-scaled and rotation-insensitive deep features to address the issues of object multi-solutions and rotations in geospatial object detection. To this end, we develop a novel object detection framework where a rotation-insensitive convolution neural network is applied for extracting multi-scaled and directioninsensitive feature representation and then the learned features can be fed into the ensemble classifier learning with fast feature pyramid. Such a non-end-to-end learning strategy intuitively reduces the computational cost without the additional performance loss, yielding an effective and efficient light-weight object detection framework. Experimental results conducted on the NWPU VHR-10 dataset demonstrate that the proposed framework outperforms several state-ofthe-art baselines.
elib-URL des Eintrags: | https://elib.dlr.de/132297/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS.2019.8898673 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1462-1465 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Deep learning, direction-insensitive, geospatial object detection, light-weight, multi-scaled, optical remote sensing imagery. | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||||||
Hinterlegt am: | 05 Dez 2019 16:05 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags