Viseras, Alberto und Garcia, Ricardo (2019) DeepIG: Multi-Robot Information Gathering with Deep Reinforcement Learning. IEEE Robotics and Automation Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lra.2019.2924839. ISSN 2377-3766.
PDF
- Preprintversion (eingereichte Entwurfsversion)
1MB |
Kurzfassung
State-of-the-art multi-robot information gathering (MR-IG) algorithms often rely on a model that describes the structure of the information of interest to drive the robots motion. This causes MR-IG algorithms to fail when they are applied to new IG tasks, as existing models cannot describe the information of interest. Therefore, we propose in this paper a MR-IG algorithm that can be applied to new IG tasks with little algorithmic changes. To this end, we introduce DeepIG: a MR-IG algorithm that uses Deep Reinforcement Learning to allow robots to learn how to gather information. Nevertheless, there are IG tasks for which accurate models have been derived. Therefore, we extend DeepIG to exploit existing models for such IG tasks. This algorithm we term it modelbased DeepIG (MB-DeepIG). First, we evaluate DeepIG in simulations, and in an indoor experiment with three quadcopters that autonomously map an unknown terrain profile built in our lab. Results demonstrate that DeepIG can be applied to different IG tasks without algorithmic changes, and that it is robust to measurement noise. Then, we benchmark MB-DeepIG against state-of-the-art information-driven Gaussian-processesbased IG algorithms. Results demonstrate that MB-DeepIG outperforms the considered benchmarks.
elib-URL des Eintrags: | https://elib.dlr.de/132180/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | DeepIG: Multi-Robot Information Gathering with Deep Reinforcement Learning | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juni 2019 | ||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/lra.2019.2924839 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 2377-3766 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | robotics, deep learning, deep reinforcement learning, information gathering, multi-robot systems | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||
Hinterlegt von: | Viseras Ruiz, Alberto | ||||||||||||
Hinterlegt am: | 10 Dez 2019 17:05 | ||||||||||||
Letzte Änderung: | 31 Okt 2023 14:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags