Li, Jingmin and Pollinger, Felix and Panitz, Hans-Jürgen and Feldmann, Hendrik and Paeth, Heiko (2019) Bias adjustment for decadal predictions of precipitation in Europe from CCLM. Climate Dynamics, 53 (3-4), pp. 1323-1340. Springer. doi: 10.1007/s00382-019-04646-y. ISSN 0930-7575.
![]() |
PDF
- Only accessible within DLR
- Published version
4MB |
![]() |
PDF
- Only accessible within DLR
- Published version
2MB |
Official URL: https://link.springer.com/article/10.1007%2Fs00382-019-04646-y
Abstract
A cross-validated model output statistics (MOS) approach is applied to precipitation data from the high-resolution regional climate model CCLM for Europe. The aim is to remove systematic errors of simulated precipitation in decadal climate predictions. We developed a two-step bias-adjustment approach. In step one, we estimate model errors based on a long-term ‘CCLM assimilation run’ (regionalizing data from a global assimilation run) and observational data. In step two, the resulting transfer function is applied to the complete set of decadal hindcast simulations (285 individual runs). In contrast to lead-time-dependent bias-adjustment approaches, this one is designed for variables with poor decadal prediction skill and without dominant lead-time-dependent bias. In terms of the CCLM assimilation run, MOS is shown to be effective in predictor selection, model skill improvement, and model bias reduction. Yet, the positive effect of MOS correction is accompanied with an underestimation of precipitation variability. After MOS application, an estimated mean square skill score of more than 0.5 is observed regionally. Simulated precipitation in decadal hindcasts is further improved when the MOS is trained on the basis of other decadal hindcasts from the same regional climate model but with a large underestimation in forecast uncertainty. Our results suggest that the MOS system derived from the assimilation run is less effective but allows the potential climate predictability in decadal hindcasts and forecasts to be retained. Using hindcasts itself for training is recommended unless a statistical method is capable of distinguishing biases and predictions within a hindcasts dataset.
Item URL in elib: | https://elib.dlr.de/131506/ | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||
Title: | Bias adjustment for decadal predictions of precipitation in Europe from CCLM | ||||||||||||||||||
Authors: |
| ||||||||||||||||||
Date: | August 2019 | ||||||||||||||||||
Journal or Publication Title: | Climate Dynamics | ||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||
Open Access: | No | ||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||
Volume: | 53 | ||||||||||||||||||
DOI : | 10.1007/s00382-019-04646-y | ||||||||||||||||||
Page Range: | pp. 1323-1340 | ||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||
ISSN: | 0930-7575 | ||||||||||||||||||
Status: | Published | ||||||||||||||||||
Keywords: | Bias-adjustment, CCLM, Hindcasts, Decadal prediction, Precipitation, Model output statistics | ||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Transport Meteorology | ||||||||||||||||||
Deposited By: | Volkert, Dr. Hans | ||||||||||||||||||
Deposited On: | 28 Nov 2019 12:37 | ||||||||||||||||||
Last Modified: | 19 May 2022 15:44 |
Repository Staff Only: item control page