Azimi, Seyedmajid and Henry, Corentin and Sommer, Lars and Schumann, Arne and Vig, Eleonora (2019) SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, pp. 1-11. IEEE. ICCV 2019, 2019-10-27 - 2019-11-02, Seoul, Korea. doi: 10.1109/ICCV.2019.00749.
![]() |
PDF
8MB |
Abstract
Understanding the complex urban infrastructure withcentimeter-level accuracy is essential for many applicationsfrom autonomous driving to mapping, infrastructure monitoring, and urban management. Aerial images providevaluable information over a large area instantaneously; nevertheless, no current dataset captures the complexityof aerial scenes at the level of granularity required byreal-world applications. To address this, we introduceSkyScapes, an aerial image dataset with highly-accurate,fine-grained annotations for pixel-level semantic labeling.SkyScapes provides annotations for 31 semantic categoriesranging from large structures, such as buildings, roadsand vegetation, to fine details, such as 12 (sub-)categories of lane markings. We have defined two main tasks onthis dataset: dense semantic segmentation and multi-classlane-marking prediction. We carry out extensive exper-iments to evaluate state-of-the-art segmentation methodson SkyScapes. Existing methods struggle to deal with thewide range of classes, object sizes, scales, and fine detailspresent. We therefore propose a novel multi-task model,which incorporates semantic edge detection and is bettertuned for feature extraction from a wide range of scales.This model achieves notable improvements over the base-lines in region outlines and level of detail on both tasks.
Item URL in elib: | https://elib.dlr.de/131251/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||||||
Title: | SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/ICCV.2019.00749 | ||||||||||||||||||||||||
Page Range: | pp. 1-11 | ||||||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep learning, Convolutional Neural Network, Segmentation, HD-Map | ||||||||||||||||||||||||
Event Title: | ICCV 2019 | ||||||||||||||||||||||||
Event Location: | Seoul, Korea | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 27 October 2019 | ||||||||||||||||||||||||
Event End Date: | 2 November 2019 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Road Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - NGC KoFiF (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||||||
Deposited By: | Bahmanyar, Gholamreza | ||||||||||||||||||||||||
Deposited On: | 26 Nov 2019 15:01 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:34 |
Repository Staff Only: item control page