Azimi, Seyedmajid und Henry, Corentin und Sommer, Lars und Schumann, Arne und Vig, Eleonora (2019) SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seiten 1-11. IEEE. ICCV 2019, 2019-10-27 - 2019-11-02, Seoul, Korea. doi: 10.1109/ICCV.2019.00749.
|
PDF
8MB |
Kurzfassung
Understanding the complex urban infrastructure withcentimeter-level accuracy is essential for many applicationsfrom autonomous driving to mapping, infrastructure monitoring, and urban management. Aerial images providevaluable information over a large area instantaneously; nevertheless, no current dataset captures the complexityof aerial scenes at the level of granularity required byreal-world applications. To address this, we introduceSkyScapes, an aerial image dataset with highly-accurate,fine-grained annotations for pixel-level semantic labeling.SkyScapes provides annotations for 31 semantic categoriesranging from large structures, such as buildings, roadsand vegetation, to fine details, such as 12 (sub-)categories of lane markings. We have defined two main tasks onthis dataset: dense semantic segmentation and multi-classlane-marking prediction. We carry out extensive exper-iments to evaluate state-of-the-art segmentation methodson SkyScapes. Existing methods struggle to deal with thewide range of classes, object sizes, scales, and fine detailspresent. We therefore propose a novel multi-task model,which incorporates semantic edge detection and is bettertuned for feature extraction from a wide range of scales.This model achieves notable improvements over the base-lines in region outlines and level of detail on both tasks.
| elib-URL des Eintrags: | https://elib.dlr.de/131251/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
| Titel: | SkyScapes - Fine-Grained Semantic Understanding of Aerial Scenes | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 2019 | ||||||||||||||||||||||||
| Erschienen in: | 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| DOI: | 10.1109/ICCV.2019.00749 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-11 | ||||||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Deep learning, Convolutional Neural Network, Segmentation, HD-Map | ||||||||||||||||||||||||
| Veranstaltungstitel: | ICCV 2019 | ||||||||||||||||||||||||
| Veranstaltungsort: | Seoul, Korea | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 27 Oktober 2019 | ||||||||||||||||||||||||
| Veranstaltungsende: | 2 November 2019 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
| Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||||||||||||||||||
| Hinterlegt am: | 26 Nov 2019 15:01 | ||||||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags