Datcu, Mihai (2019) Artificial Intelligence for Very High Resolution Earth Observation: Environment Monitoring. [sonstige Veröffentlichung]
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The Earth is facing unprecedented climatic, geomorphologic, environmental and anthropogenic changes, which require global scale observation and monitoring. Thus a multitude of new orbital and suborbital Earth Observation (EO) sensors and mission are in operation or will be soon launched. The interest is in a global understanding involving observation of large extended areas, and long periods of time, with a broad variety of EO sensors. The collected EO data volumes are thus increasing immensely with a rate of many Terabytes of data a day. With the current EO technologies these figure will be soon amplified, the horizons are beyond Zettabytes of data. The challenge is the exploration of these data and the timely delivery of focused information and knowledge in a simple understandable format. Therefore, search engines, and Data Mining are new fields of study that have arisen to seek solutions to automating the extraction of information from EO observations and other related sources that can lead to Knowledge Discovery and the creation of an actionable intelligence. Knowledge Discovery is among the most interesting research trends, however, the real challenge is to combine Artificial Intelligence with the power and potential of human intelligence, this being a primary objective in the field of Human Machine Communication (HMC). The goal is to go beyond the today methods of information retrieval and develop new concepts and methods to support end users of EO data to interactively analyze the information content, extract relevant parameters, associate various sources of information, learn and/or apply knowledge and to visualize the pertinent information without getting overwhelmed. In this context, the synergy of HMC and information retrieval becomes an interdiscipliinary approach in automating EO data analysis.
elib-URL des Eintrags: | https://elib.dlr.de/130905/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||
Zusätzliche Informationen: | This was a tutorial by Prof. Datcu in the frame of Blaise Pascal International Chair | ||||||||
Titel: | Artificial Intelligence for Very High Resolution Earth Observation: Environment Monitoring | ||||||||
Autoren: |
| ||||||||
Datum: | April 2019 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Earth Observation Data, Artificial Intelligence, Very High Resolution Imagery | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||
Hinterlegt am: | 21 Nov 2019 13:42 | ||||||||
Letzte Änderung: | 04 Dez 2019 15:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags