Wurm, Michael and Weigand, Matthias and Stark, Thomas and Goebel, Jan and Wagner, Gert G. and Taubenböck, Hannes (2019) Modelling the impact of the urban spatial structure on the choice of residential locations using 'big earth data' and machine learning. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. Joint Urban Remote Sensing Event (JURSE), 2019-05-21 - 2019-05-24, Vannes, Frankreich. doi: 10.1109/JURSE.2019.8808942. ISBN 978-172810009-8. ISSN 2642-9535.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/8808942
Abstract
People settle in areas of the city which fit to their individual social and economic situation. In consequence, similar social groups can often be found in similar areas of cities - a process commonly known as segregation. These processes are well-studied from a socioeconomic perspective. In this study, in contrast, we address this topic with an explicitly spatial analysis of these living environments. We present an exploratory data analysis approach to study physical characteristics in different living environments based on a large number of variables derived from spatial data such as satellites, OpenStreetMap and statistical data. Several sensitivity analyses are performed to quantitatively analyze the descriptive performance of these spatial variables on three socioeconomic groups: high and low status households as well as the proportion of foreign population. Non-parametric regression models based on random forests yield highest R 2 of almost 0.52 for the proportion of foreign population.
Item URL in elib: | https://elib.dlr.de/130820/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||||||
Title: | Modelling the impact of the urban spatial structure on the choice of residential locations using 'big earth data' and machine learning | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2019 | ||||||||||||||||||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1109/JURSE.2019.8808942 | ||||||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | big data, social science, machine learning, prediction, variable selection | ||||||||||||||||||||||||||||
Event Title: | Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||||||
Event Location: | Vannes, Frankreich | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 21 May 2019 | ||||||||||||||||||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||
Deposited By: | Wurm, Michael | ||||||||||||||||||||||||||||
Deposited On: | 02 Dec 2019 11:17 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:34 |
Repository Staff Only: item control page