Wurm, Michael und Weigand, Matthias und Stark, Thomas und Goebel, Jan und Wagner, Gert G. und Taubenböck, Hannes (2019) Modelling the impact of the urban spatial structure on the choice of residential locations using 'big earth data' and machine learning. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, Seiten 1-4. Joint Urban Remote Sensing Event (JURSE), 2019-05-21 - 2019-05-24, Vannes, Frankreich. doi: 10.1109/JURSE.2019.8808942. ISBN 978-172810009-8. ISSN 2642-9535.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/8808942
Kurzfassung
People settle in areas of the city which fit to their individual social and economic situation. In consequence, similar social groups can often be found in similar areas of cities - a process commonly known as segregation. These processes are well-studied from a socioeconomic perspective. In this study, in contrast, we address this topic with an explicitly spatial analysis of these living environments. We present an exploratory data analysis approach to study physical characteristics in different living environments based on a large number of variables derived from spatial data such as satellites, OpenStreetMap and statistical data. Several sensitivity analyses are performed to quantitatively analyze the descriptive performance of these spatial variables on three socioeconomic groups: high and low status households as well as the proportion of foreign population. Non-parametric regression models based on random forests yield highest R 2 of almost 0.52 for the proportion of foreign population.
elib-URL des Eintrags: | https://elib.dlr.de/130820/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Modelling the impact of the urban spatial structure on the choice of residential locations using 'big earth data' and machine learning | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||||||
Erschienen in: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/JURSE.2019.8808942 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||||||||||
ISBN: | 978-172810009-8 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | big data, social science, machine learning, prediction, variable selection | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||||||
Veranstaltungsort: | Vannes, Frankreich | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 21 Mai 2019 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||
Hinterlegt von: | Wurm, Michael | ||||||||||||||||||||||||||||
Hinterlegt am: | 02 Dez 2019 11:17 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags