elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Learning-Based Class-Agnostic Segmentation of Grasped Objects

Boerdijk, Wout (2019) Learning-Based Class-Agnostic Segmentation of Grasped Objects. DLR-Interner Bericht. DLR-IB-RM-OP-2019-153. Masterarbeit. Technical University of Munich.

[img] PDF - Nur DLR-intern zugänglich
84MB

Kurzfassung

Autonomous robotic applications require the ability to acquire information about newly encountered objects. However, currently most methods are trained in an offline manner, and require a large amount of annotated data. To meet the respective demand, this thesis proposes two methods to automatically obtain binary labels of grasped objects. Inspired by human learning through interaction, any object instance can be labeled just by concurrent manual manipulation and observation. Specifically, two approaches are explored: First, the presence of a hand in an image is leveraged as a cue to guide a network for the task of object-in-hand segmentation. A diverse set of labeled object instances enables the model to learn an object-agnostic item-in-hand representation. Second, a hand or robot manipulator representation is learned by exploiting motion cues as optical flow. Given a static scene, a moving grasped object can then be differentiated from the robot or hand for the segmentation of the grasped object. Through extensive experimental evaluation, the effectiveness of both methods under realistic conditions is verified.

elib-URL des Eintrags:https://elib.dlr.de/130799/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Learning-Based Class-Agnostic Segmentation of Grasped Objects
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Boerdijk, WoutWout.Boerdijk (at) dlr.dehttps://orcid.org/0000-0003-0789-5970NICHT SPEZIFIZIERT
Datum:2019
Referierte Publikation:Nein
Open Access:Nein
Status:veröffentlicht
Stichwörter:Class Agnostic Object Segmentation, Grasped Object Segmentation, Segmentation from Motion, Robotic Object Manipulation, Deep Learning, Optical Flow
Institution:Technical University of Munich
Abteilung:Department of Informatics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Boerdijk, Wout
Hinterlegt am:19 Nov 2019 11:28
Letzte Änderung:28 Mär 2023 23:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.