elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multilabel Annotation of Multispectral Remote Sensing Images using Error-Correcting Output Codes and Most Ambiguous Examples

Radoi, Anamaria und Datcu, Mihai (2019) Multilabel Annotation of Multispectral Remote Sensing Images using Error-Correcting Output Codes and Most Ambiguous Examples. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (7), Seiten 2121-2134. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/jstars.2019.2916838. ISSN 1939-1404.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/8753507

Kurzfassung

This paper presents a novel framework for multilabel classification of multispectral remote sensing images using error-correcting output codes. Starting with a set of primary class labels, the proposed framework consists in transforming the multiclass problem into multiple binary learning subtasks. The distributed output representations of these binary learners are then transformed into primary class labels. In order to train robust binary classifiers on a reduced annotated dataset, the learning process is iterative and involves determining most ambiguous examples, which are included in the training set at each iteration. As part of the semantic image recognition process, two categories of high-level image representations are proposed for the feature extraction part. First, deep convolutional neural networks are used to form high-level representations of the images. Second, we test our classification framework with a bag-of-visual words model based on the scale invariant feature transform, used in combination with color descriptors. In the first case, we propose the usage of pretrained state-of-the-art deep learning models that cancel the need to estimate model parameters of complex architectures, whereas, in the second case, a dictionary of visual words must be determined from the training set. Experiments are conducted on GeoEye-1 and Sentinel-2 images and the results show the effectiveness of the proposed approach toward a multilabel classification, when compared to other methods.

elib-URL des Eintrags:https://elib.dlr.de/130524/
Dokumentart:Zeitschriftenbeitrag
Titel:Multilabel Annotation of Multispectral Remote Sensing Images using Error-Correcting Output Codes and Most Ambiguous Examples
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Radoi, AnamariaUniversity Politehnica of Bucharest, Bucharest, RomaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2019
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.1109/jstars.2019.2916838
Seitenbereich:Seiten 2121-2134
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Training, Remote sensing, Task analysis, Neural networks, Support vector machines, Feature extraction, Semantics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Karmakar, Chandrabali
Hinterlegt am:04 Dez 2019 15:06
Letzte Änderung:14 Jun 2023 14:11

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.