Radoi, Anamaria und Datcu, Mihai (2019) Multilabel Annotation of Multispectral Remote Sensing Images using Error-Correcting Output Codes and Most Ambiguous Examples. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (7), Seiten 2121-2134. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/jstars.2019.2916838. ISSN 1939-1404.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/8753507
Kurzfassung
This paper presents a novel framework for multilabel classification of multispectral remote sensing images using error-correcting output codes. Starting with a set of primary class labels, the proposed framework consists in transforming the multiclass problem into multiple binary learning subtasks. The distributed output representations of these binary learners are then transformed into primary class labels. In order to train robust binary classifiers on a reduced annotated dataset, the learning process is iterative and involves determining most ambiguous examples, which are included in the training set at each iteration. As part of the semantic image recognition process, two categories of high-level image representations are proposed for the feature extraction part. First, deep convolutional neural networks are used to form high-level representations of the images. Second, we test our classification framework with a bag-of-visual words model based on the scale invariant feature transform, used in combination with color descriptors. In the first case, we propose the usage of pretrained state-of-the-art deep learning models that cancel the need to estimate model parameters of complex architectures, whereas, in the second case, a dictionary of visual words must be determined from the training set. Experiments are conducted on GeoEye-1 and Sentinel-2 images and the results show the effectiveness of the proposed approach toward a multilabel classification, when compared to other methods.
elib-URL des Eintrags: | https://elib.dlr.de/130524/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Multilabel Annotation of Multispectral Remote Sensing Images using Error-Correcting Output Codes and Most Ambiguous Examples | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2019 | ||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 12 | ||||||||||||
DOI: | 10.1109/jstars.2019.2916838 | ||||||||||||
Seitenbereich: | Seiten 2121-2134 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1939-1404 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Training, Remote sensing, Task analysis, Neural networks, Support vector machines, Feature extraction, Semantics | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||
Hinterlegt am: | 04 Dez 2019 15:06 | ||||||||||||
Letzte Änderung: | 14 Jun 2023 14:11 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags