Huang, Zhongling und Dumitru, Corneliu Octavian und Pang, Zhonghe und Le, Bin und Datcu, Mihai (2019) Can a Deep Network Understand the Land Cover Across Sensors? In: 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2019, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/igarss.2019.8899080.
PDF
971kB |
Offizielle URL: https://igarss2019.org/Papers/ViewPapers.asp?PaperNum=3798
Kurzfassung
Deep learning algorithms are widely used in remote sensing image scene understanding. Generally, a large-scale annotated dataset is essential to train a deep neural network for classification. In practical terms, however, a large amount of unknown remote sensing images obtained from different sensors need to be understood which may vary from resolution, geolocation and imaging conditions compared with annotated datasets. In this paper, an unsupervised domain adaptation framework based on ResNet-18 is presented to transfer the knowledge of an existing annotated land cover dataset to other remote sensing data, decreasing the discrepancy among images across sensors. The results show a significant improvement in scene understanding of new remote sensing images.
elib-URL des Eintrags: | https://elib.dlr.de/130278/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Can a Deep Network Understand the Land Cover Across Sensors? | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Januar 2019 | ||||||||||||||||||||||||
Erschienen in: | 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/igarss.2019.8899080 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | land use classification,remote sensing images, transfer learning, domain adaptation | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2019 | ||||||||||||||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||||||
Hinterlegt am: | 02 Dez 2019 14:27 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags