elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Knowledge Extracted from Copernicus Satellite Data

Dumitru, Corneliu Octavian und Schwarz, Gottfried und Eltoft, Torbjørn und Kræmer, Thomas und Wegner, Penelope und Hughes, Nick und Arthurs, David und Koubarakis, Manolis und Datcu, Mihai (2019) Knowledge Extracted from Copernicus Satellite Data. 11th International Symposium on Digital Earth, 2019-09-24 - 2019-09-27, Florence, Italy.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.digitalearth2019.eu

Kurzfassung

ExtremeEarth is a European H2020 project; it aims at developing analytics techniques and technologies that combine Copernicus satellite data with information and knowledge extraction, and exploiting them on ESA’s Food Security and Polar Thematic Exploitation Platforms. In this paper, we focus on the Polar case which requires the selection of validation areas, the generation of a training dataset, the development and testing of deep learning algorithms, and the demonstration of regional results. During the development of deep learning algorithms, a key activity is to establish a large amount of referenced Earth Observation data. They need to be sufficiently diverse to cover the major target areas of satellite images under varying imaging conditions and across all seasons. For doing this, we propose to select overlapping target areas from Synthetic Aperture Radar and multispectral images acquired with rapid succession. Such a combination approach already demonstrated its applicability for monitoring seasonal snow cover. By applying an already established active learning approach based on a Support Vector Machine with relevance feedback, we can limit ourselves to a limited number of typical satellite images to extract their information content, and to generate semantic annotations for them. This approach is also a simple way to generate benchmarking datasets that can be used for testing and validating different algorithms, and for creating additional bigger datasets for large-scale demonstrations. The proposed methodology uses new paradigms from Recurrent Neural Networks and Generative Adversarial Networks, supported by Bayesian and Information Bottleneck concepts.

elib-URL des Eintrags:https://elib.dlr.de/130277/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Knowledge Extracted from Copernicus Satellite Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schwarz, GottfriedGottfried.Schwarz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Eltoft, TorbjørnUiT The Arctic University of Norway, Department of Physics and Technology, NO-9037, Tromso, NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kræmer, ThomasUiT The Arctic University of Norway, Department of Physics and Technology, NO-9037, Tromso, NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wegner, PenelopeMET NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hughes, NickMET NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Arthurs, DavidPolarView CanadaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Koubarakis, ManolisUniversity of AthensNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2019
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Knowledge extraction, Copericus,Generative Adversarial Networks
Veranstaltungstitel:11th International Symposium on Digital Earth
Veranstaltungsort:Florence, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:24 September 2019
Veranstaltungsende:27 September 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Karmakar, Chandrabali
Hinterlegt am:03 Dez 2019 09:12
Letzte Änderung:24 Apr 2024 20:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.