Dumitru, Corneliu Octavian und Andrei, Vlad und Schwarz, Gottfried und Datcu, Mihai (2019) Machine Learning for Sea Ice Monitoring from Satellites. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. Munich Remote Sensing Symposium 2019, 2019-09-18 - 2019-09-20, Munich, Germany. doi: 10.5194/isprs-archives-XLII-2-W16-83-2019. ISSN 1682-1750.
PDF
482kB |
Offizielle URL: http://www.pf.bgu.tum.de/isprs/mrss19/
Kurzfassung
Today, radar imaging from space allows continuous and wide-area sea ice monitoring under nearly all weather conditions. To this end, we applied modern machine learning techniques to produce ice-describing semantic maps of the polar regions of the Earth. Time series of these maps can then be exploited for local and regional change maps of selected areas. What we expect, however, are fully-automated unsupervised routine classifications of sea ice regions that are needed for the rapid and reliable monitoring of shipping routes, drifting and disintegrating icebergs, snowfall and melting on ice, and other dynamic climate change indicators. Therefore, we designed and implemented an automated processing chain that analyses and interprets the specific ice-related content of high-resolution synthetic aperture radar (SAR) images. We trained this system with selected images covering various use cases allowing us to interpret these images with modern machine learning approaches. In the following, we describe a system comprising representation learning, variational inference, and auto-encoders. Test runs have already demonstrated its usefulness and stability that can pave the way towards future artificial intelligence systems extending, for instance, the current capabilities of traditional image analysis by including content-related image understanding.
elib-URL des Eintrags: | https://elib.dlr.de/130273/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Machine Learning for Sea Ice Monitoring from Satellites | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLII-2-W16-83-2019 | ||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Machine Learning, Sea Ice Monitoring | ||||||||||||||||||||
Veranstaltungstitel: | Munich Remote Sensing Symposium 2019 | ||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 18 September 2019 | ||||||||||||||||||||
Veranstaltungsende: | 20 September 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||||||
Hinterlegt am: | 28 Nov 2019 08:33 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags