Geiß, Christian and Aravena Pelizari, Patrick and Bauer, Stefan and Schmitt, Andreas and Taubenböck, Hannes (2019) Automatic Training Set Compilation with Multisource Geodata for DTM Generation from the TanDEM-X DSM. IEEE Geoscience and Remote Sensing Letters, 17 (3), pp. 456-460. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2019.2921600. ISSN 1545-598X.
PDF
- Postprint version (accepted manuscript)
30MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759932
Abstract
The TanDEM-X mission (TDM) is a spaceborne radar interferometer which delivers a global digital surface model (DSM) with a spatial resolution of 0.4 arcsec. In this letter, we propose an automatic workflow for digital terrain model (DTM) generation from TDM DSM data through additional consideration of Sentinel-2 imagery and open-source geospatial vector data. The method includes the automatic and robust compilation of training samples by imposing dedicated criteria on the multisource geodata for subsequent learning of a classification model. The model is capable of supporting the accurate distinction of elevated objects (OBJ) and bare earth (BE) measurements in the TDM DSM. Finally, a DTM is interpolated from identified BE measurements. Experimental results obtained from a test site which covers a complex and heterogeneous built environment of Santiago de Chile, Chile, underline the usefulness of the proposed workflow, since it allows for substantially increased accuracies compared to a morphological filter-based method.
Item URL in elib: | https://elib.dlr.de/130016/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Automatic Training Set Compilation with Multisource Geodata for DTM Generation from the TanDEM-X DSM | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | July 2019 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 17 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2019.2921600 | ||||||||||||||||||||||||
Page Range: | pp. 456-460 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Automatic training sample compilation, digital terrain model (DTM) generation, Sentinel-2, supervised classification, TanDEM-X, OpenStreetMap (OSM). | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||||||||||
Deposited On: | 05 Nov 2019 12:27 | ||||||||||||||||||||||||
Last Modified: | 31 Oct 2023 14:05 |
Repository Staff Only: item control page