Geiß, Christian und Aravena Pelizari, Patrick und Bauer, Stefan und Schmitt, Andreas und Taubenböck, Hannes (2019) Automatic Training Set Compilation with Multisource Geodata for DTM Generation from the TanDEM-X DSM. IEEE Geoscience and Remote Sensing Letters, 17 (3), Seiten 456-460. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2019.2921600. ISSN 1545-598X.
|
PDF
- Postprintversion (akzeptierte Manuskriptversion)
30MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759932
Kurzfassung
The TanDEM-X mission (TDM) is a spaceborne radar interferometer which delivers a global digital surface model (DSM) with a spatial resolution of 0.4 arcsec. In this letter, we propose an automatic workflow for digital terrain model (DTM) generation from TDM DSM data through additional consideration of Sentinel-2 imagery and open-source geospatial vector data. The method includes the automatic and robust compilation of training samples by imposing dedicated criteria on the multisource geodata for subsequent learning of a classification model. The model is capable of supporting the accurate distinction of elevated objects (OBJ) and bare earth (BE) measurements in the TDM DSM. Finally, a DTM is interpolated from identified BE measurements. Experimental results obtained from a test site which covers a complex and heterogeneous built environment of Santiago de Chile, Chile, underline the usefulness of the proposed workflow, since it allows for substantially increased accuracies compared to a morphological filter-based method.
| elib-URL des Eintrags: | https://elib.dlr.de/130016/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Automatic Training Set Compilation with Multisource Geodata for DTM Generation from the TanDEM-X DSM | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | Juli 2019 | ||||||||||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 17 | ||||||||||||||||||||||||
| DOI: | 10.1109/LGRS.2019.2921600 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 456-460 | ||||||||||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Automatic training sample compilation, digital terrain model (DTM) generation, Sentinel-2, supervised classification, TanDEM-X, OpenStreetMap (OSM). | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||
| Hinterlegt von: | Geiß, Christian | ||||||||||||||||||||||||
| Hinterlegt am: | 05 Nov 2019 12:27 | ||||||||||||||||||||||||
| Letzte Änderung: | 31 Okt 2023 14:05 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags