elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modeling of internal energy modes within a kinetic Fokker-Planck algorithm

Hepp, Christian und Grabe, Martin und Hannemann, Klaus (2019) Modeling of internal energy modes within a kinetic Fokker-Planck algorithm. DSMC 2019 Conference, 2019-09-22 - 2019-09-25, Santa Fe.

[img] PDF - Nur DLR-intern zugänglich
2MB

Offizielle URL: https://www.sandia.gov/dsmc/

Kurzfassung

The Direct Simulation Monte Carlo (DSMC) method is widely used to model non-equilibrium rarefied gas flows, such as shock waves or strong expansion flows. However, its application to practical problems at rather high density is costly, as the computational effort for DSMC increases strongly with decreasing Knudsen number. It is therefore common practice to couple DSMC with less accurate, but faster methods, applying those to flow domains in which the resolution and modeling depth of DSMC is not required. One recently proposed method employs a kinetic Fokker-Planck (FP) model. The FP method employs a large number of simulator particles that are moved through the computational domain, and updates particle velocities in a separate step, as is the case in the DSMC method. These algorithmic similarity fosters a simple coupling of both methods. Correct modeling of internal energy modes is relevant for simulating non-equilibrium molecular flow. While well-established models for internal energy relaxation exist for DSMC, only few approaches are documented in the open literature for the FP method. In particular, according to the authors’ knowledge, no models for describing discrete internal energy levels within FP have yet been developed. In this talk, a scheme is presented to extend arbitrary monatomic Fokker-Planck models to describe polyatomic species. A master equation approach is used to model internal energy relaxation, but instead of solving the master equation directly, the underlying random process is simulated. Three different models are suggested, describing internal particle energies as continuous scalars or as a set of discrete levels. The proposed models are implemented in the well-known cubic Fokker-Planck model using the SPARTA particle simulation framework, and relaxation, expansion flow and shock flow test cases are investigated to demonstrate their performance.

elib-URL des Eintrags:https://elib.dlr.de/129976/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modeling of internal energy modes within a kinetic Fokker-Planck algorithm
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hepp, ChristianChristian.Hepp (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grabe, MartinMartin.Grabe (at) dlr.dehttps://orcid.org/0000-0003-0361-2734NICHT SPEZIFIZIERT
Hannemann, KlausKlaus.Hannemann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:24 September 2019
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Direct Simulation Monte Carlo (DSMC), Fokker-Planck, internal energy relaxation
Veranstaltungstitel:DSMC 2019 Conference
Veranstaltungsort:Santa Fe
Veranstaltungsart:Workshop
Veranstaltungsbeginn:22 September 2019
Veranstaltungsende:25 September 2019
Veranstalter :Sandia National Laboratories
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Wiederverwendbare Raumfahrtsysteme und Antriebstechnologie
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Hinterlegt von: Grabe, Dr. Martin
Hinterlegt am:07 Nov 2019 16:42
Letzte Änderung:24 Apr 2024 20:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.