elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards behaviour based testing to understand the black box of autonomous cars

Utesch, Fabian und Brandies, Alexander und Pekezou Fouopi, Paulin und Schießl, Caroline (2020) Towards behaviour based testing to understand the black box of autonomous cars. European Transport Research Review, 12 (48). Springer. doi: 10.1186/s12544-020-00438-2. ISSN 1867-0717.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
716kB

Offizielle URL: https://etrr.springeropen.com/articles/10.1186/s12544-020-00438-2

Kurzfassung

Background Autonomous cars could make traffic safer, more convenient, efficient and sustainable. They promise the convenience of a personal taxi, without the need for a human driver. Artificial intelligence would operate the vehicle instead. Especially deep neural networks (DNNs) offer a way towards this vision due to their exceptional performance particularly in perception. DNNs excel in identifying objects in sensor data which is essential for autonomous driving. These networks build their decision logic through training instead of explicit programming. A drawback of this technology is that the source code cannot be reviewed to assess the safety of a system. This leads to a situation where currently used methods for regulatory approval do not work to validate a promising new piece of technology. Objective In this paper four approaches are highlighted that might help understanding black box technical systems for autonomous cars by focusing on its behaviour instead. The method of experimental psychology is proposed to model the inner workings of DNNs by observing its behaviour in specific situations. It is argued that penetration testing can be applied to identify weaknesses of the system. Both can be applied to improve autonomous driving systems. The shadowing method reveals behaviour in a naturalistic setting while ensuring safety. It can be seen as a theoretical driving exam. The supervised driving method can be utilised to decide if the technology is safe enough. It has potential to be developed into a practical driving exam.

elib-URL des Eintrags:https://elib.dlr.de/129843/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards behaviour based testing to understand the black box of autonomous cars
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Utesch, FabianFabian.Utesch (at) dlr.dehttps://orcid.org/0000-0003-3830-5777NICHT SPEZIFIZIERT
Brandies, AlexanderAlexander.Brandies (at) dlr.dehttps://orcid.org/0000-0003-1604-4748NICHT SPEZIFIZIERT
Pekezou Fouopi, PaulinPaulin.PekezouFouopi (at) dlr.dehttps://orcid.org/0000-0003-3583-8279NICHT SPEZIFIZIERT
Schießl, CarolineCaroline.Schiessl (at) dlr.dehttps://orcid.org/0000-0001-5849-5075NICHT SPEZIFIZIERT
Datum:29 Juli 2020
Erschienen in:European Transport Research Review
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.1186/s12544-020-00438-2
Verlag:Springer
ISSN:1867-0717
Status:veröffentlicht
Stichwörter:Autonomous Cars, Deep Neural Networks, Artificial Intelligence
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - Energie und Verkehr (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Human Factors
Hinterlegt von: Utesch, Fabian
Hinterlegt am:04 Sep 2020 14:06
Letzte Änderung:24 Okt 2023 14:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.