elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Estimation of Air Leakage Sizes in Building Envelope using High-Frequency Acoustic Impulse Response Technique

Kölsch, Benedikt und Schiricke, Björn und Estevam Schmiedt, Jacob und Hoffschmidt, Bernhard (2019) Estimation of Air Leakage Sizes in Building Envelope using High-Frequency Acoustic Impulse Response Technique. In: AIVC Conference Proceedings 2019. AIVC Conference, 15.-16. Oktober 2019, Ghent, Belgium.

[img] PDF
941kB

Kurzfassung

Heating energy in buildings represents a significant proportion of the total global energy consumption. Uncontrolled airflow through the building envelope contributes significantly to its energy losses. Existing methods, like the fan pressurisation technique, which measure the air infiltration rate and quantify individual leakage sizes in buildings, are expensive and time-consuming. Additionally, the accurate detection of the leak location with these methods depends strongly on the experience of the respective building inspector. Moreover, it is hardly possible to identify the size of each leakage accurately and quantify their contributions to the entire building air change rate. Thus, the development of a new measurement method is a vital step. In this paper, a high-frequency acoustic method is proposed to identify leakage sizes. Using an impulse Response technique with multiple microphones and a high-frequency broad-band excitation signal enables the identification of frequency components which are predominantly attenuated inside walls. In a laboratory test chamber, different interchangeable walls have been used. Therefore, it was possible to investigate different leakage sizes and compare them directly in a controlled environment. As an excitation signal, an exponential sine sweep is used, which is able to cover a broad frequency range and simultaneously only excites the desired frequencies. By analysing the spectra, it is possible to differentiate between different cracks and leak sizes. Therefore, this technique has the potential to concentrate only on significant leaks during a building renovation and save building owners time and costs.

elib-URL des Eintrags:https://elib.dlr.de/129823/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Estimation of Air Leakage Sizes in Building Envelope using High-Frequency Acoustic Impulse Response Technique
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kölsch, Benediktbenedikt.koelsch (at) dlr.dehttps://orcid.org/0000-0003-3564-9822NICHT SPEZIFIZIERT
Schiricke, BjörnBjoern.Schiricke (at) dlr.dehttps://orcid.org/0000-0003-0572-2048NICHT SPEZIFIZIERT
Estevam Schmiedt, JacobJacob.EstevamSchmiedt (at) dlr.dehttps://orcid.org/0000-0002-0794-6769NICHT SPEZIFIZIERT
Hoffschmidt, BernhardBernhard.Hoffschmidt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:16 Oktober 2019
Erschienen in:AIVC Conference Proceedings 2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Air leakage, acoustics, high frequency, impulse response, leakage size
Veranstaltungstitel:AIVC Conference
Veranstaltungsort:Ghent, Belgium
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:15.-16. Oktober 2019
Veranstalter :AIVC
HGF - Forschungsbereich:Energie
HGF - Programm:Energieeffizienz, Materialien und Ressourcen
HGF - Programmthema:Methoden und Konzepte für Materialentwicklung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E VS - Verbrennungssysteme
DLR - Teilgebiet (Projekt, Vorhaben):E - Materialien für die Energietechnik (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Qualifizierung
Hinterlegt von: Kruschinski, Anja
Hinterlegt am:20 Nov 2019 15:19
Letzte Änderung:29 Mär 2023 00:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.