DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Characterizing a multi delta wing for aeroelastic wind tunnnel experiments

Zastrow, Jonas (2019) Characterizing a multi delta wing for aeroelastic wind tunnnel experiments. IFASD 2019 - International Forum on Aeroelasticity and Structural Dynamics, 10.-13. Juni 2019, Savannah, GA (USA).

[img] PDF


The vortical flow over swept wings with several leading edge separations bears a number of challenges for the proper design of the planform and the efficient control during the flight. Leading edge vortices function as the major lifting mechanism for combat aircraft and depict the aircraft’s moment coefficients as well. The flow is either unsteady or a least quasi-steady as soon as the vortices are formed, but never steady. Even though the mechanisms of the vortical flow and its effects on the aircraft’s forces and moments are well understood, their prediction is still not precise enough. Several failures of jet prototypes occurred in the past, which were accounted to unexpected vortex shifts and thus load changes, or to fatal vortex structure interaction. Resolving the flow topology over combat aircraft configurations numerically is not feasible, yet. Due to the unsteadiness time resolved calculations are needed in order to reveal all important aspects of the flow, which demands more CPU-capacities than are available at the moment. Thus only selected flow cases can be resolved. RANS-calculations dampen many effects significantly, which distorts the observed planform characteristics. Additionally the different positions of the vortices throughout the flight regime compromise efficient grid development. As a consequence wind tunnel experiments with time resolved measurements are needed and must be developed carefully, since they are very costly. The trend shows that modern combat aircraft planforms provide multiple leading edge vortices, which take over specific functions such as stabilization, distribution or manoeuvring. Such a next generation planform has been developed by the DLR Institute of Aeroelasticity as well. Two wind tunnel test campaigns are planned with a semi-span model. A preliminarily selected sensor placement is crucial for the success of the measurements and additionally the structural layout must be constructed very carefully in order to ensure the structural integrity of the model throughout the entire flight regime. The flow topology of the aircraft model features a two-stage vortex systems, which leads to severe load changes between subsonic and supersonic velocities. Furthermore vortex-vortex interaction and vortex-structure interaction shall be characterized during steady positions, during pitching motions and during manoeuvres. The aforementioned tasks have been and are still prepared by numerical simulations with the DLR TAU-code. An angle of incidence and Mach-number matrix gave a rough characterization of the new model planform. Strong gradients in the coefficient slopes show points of interest and convergence problems show possible critical points. In order to improve the resolution of the flow topology the TAU grid adaptation module was used and up to three adaptation stages were implemented. This resulted in resolving secondary separations, tertiary separations and feeding sheets effectively. The newly developed model with its unique vortex topology poses very interesting characteristics and could provide a new base for modern combat aircraft developments. The structural layout and sensor placement is in progress and accompanied by time resolved simulations. These efforts should improve the quality and the efficiency of the currently planned wind tunnel experiments at the DLR and furthermore the derived routines for the numerical preparation of experiments can be adopted by succeeding projects as well.

Item URL in elib:https://elib.dlr.de/129681/
Document Type:Conference or Workshop Item (Speech)
Title:Characterizing a multi delta wing for aeroelastic wind tunnnel experiments
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Zastrow, Jonasjonas.zastrow (at) dlr.deUNSPECIFIED
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
Keywords:double delta wing, vortex lift, grid adaptation, buffeting
Event Title:IFASD 2019 - International Forum on Aeroelasticity and Structural Dynamics
Event Location:Savannah, GA (USA)
Event Type:international Conference
Event Dates:10.-13. Juni 2019
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:fixed-wing aircraft
DLR - Research area:Aeronautics
DLR - Program:L AR - Aircraft Research
DLR - Research theme (Project):L - Flight Physics (old)
Location: Göttingen
Institutes and Institutions:Institute of Aeroelasticity > Aeroelastic Experiments
Deposited By: Grischke, Birgid
Deposited On:11 Dec 2019 17:16
Last Modified:11 Dec 2019 17:16

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.