elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Global Slum Mapping From Space: Detecting Urban Poverty Using a Transfer Learned Fully Convolutional Network

Stark, Thomas und Wurm, Michael und Taubenböck, Hannes und Zhu, Xiao Xiang (2019) Towards Global Slum Mapping From Space: Detecting Urban Poverty Using a Transfer Learned Fully Convolutional Network. Phi-week 2019, 2019-09-09 - 2019-09-13, Rom, Italien.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Informal settlements are the result of the continuing rapid growth of mega cities, especially in the global south where people migrate from rural areas in hope for a better future. Poverty is considered one of the major challenges to our society in the upcoming decades, making it one of the most important issues in the Sustainable Developments Goals as defined by the United Nations. These settlements, however, often lack basic sanitation and access to clean water. While many urban agglomerations of the global south are prone to large slum areas, still, the exact location and size of these settlements is often unknown. Remote sensing methods have improved tremendously in their capabilities of mapping informal settlements and its morphological features, which can be described by their high building density, small building sizes or its building orientation. But the challenge of large scale slum mapping still remains open, due to fuzzy feature spaces between formal and informal settlements, as well as a significant imbalance of slum occurrences where slums only account for 1% in the data. To tackle this issue we propose a fully convolutional xception network (XFCN). With its 34 convolutional and five dilated convolutional layers including four skip connections during the up-sampling phase the XFCN is capable of detecting poor urban areas in a coherent transfer learning approach using high resolution satellite images. This proves to be an ambitious task, differentiating between formal built-up structures and informal settlements at high resolutions. We train the network on a large sample of globally distributed slums (Cape Town, Caracas, Delhi, Dhaka, Lagos, Medellin, Mumbai, Nairobi, Rio de Janeiro, São Paulo and Shenzhen), greatly heterogeneous in its morphologic feature space and transfer the XFCN to map informal settlements. The XFCN is trained from scratch using 5 input channels and rigorous regularization. Using this approach we are able to reach an overall accuracy of up to 95%.

elib-URL des Eintrags:https://elib.dlr.de/129502/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Towards Global Slum Mapping From Space: Detecting Urban Poverty Using a Transfer Learned Fully Convolutional Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stark, ThomasThomas.Stark (at) dlr.dehttps://orcid.org/0000-0002-6166-7541NICHT SPEZIFIZIERT
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:11 September 2019
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Deep learning, fully convolutional network, transfer learning, remote sensing, urban poverty
Veranstaltungstitel:Phi-week 2019
Veranstaltungsort:Rom, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 September 2019
Veranstaltungsende:13 September 2019
Veranstalter :Europen Space Agency
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Stark, Thomas
Hinterlegt am:18 Okt 2019 11:59
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.