Ali, Muhammad Kashif und Rajput, Asif und Shahzad, Muhammad und Khan, Farhan und Akthar, Faheem und Börner, Anko (2019) Multi-Sensor Depth Fusion Framework for Real-Time 3D Reconstruction. IEEE Access, 7, Seiten 136471-136480. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/access.2019.2942375. ISSN 2169-3536.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8844674
Kurzfassung
For autonomous robots, 3D perception of environment is an essential tool, which can be used to achieve better navigation in an obstacle rich environment. This understanding requires a huge amount of computational resources; therefore, the real-time 3D reconstruction of surrounding environment has become a topic of interest for countless researchers in the recent past. Generally, for the outdoor 3D models, stereo cameras and laser depth measuring sensors are employed. The data collected through the laser ranging sensors is relatively accurate but sparse in nature. In this paper, we propose a novel mechanism for the incremental fusion of this sparse data to the dense but limited ranged data provided by the stereo cameras, to produce accurate dense depth maps in real-time over a resource limited mobile computing device. Evaluation of the proposed method shows that it outperforms the state-of-the-art reconstruction frameworks which only utilizes depth information from a single source.
elib-URL des Eintrags: | https://elib.dlr.de/129472/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Multi-Sensor Depth Fusion Framework for Real-Time 3D Reconstruction | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Access | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 7 | ||||||||||||||||||||||||||||
DOI: | 10.1109/access.2019.2942375 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 136471-136480 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | sensor fusion, laser scanner, stereo camera, computer vision | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > Echtzeit-Datenprozessierung | ||||||||||||||||||||||||||||
Hinterlegt von: | Börner, Anko | ||||||||||||||||||||||||||||
Hinterlegt am: | 17 Okt 2019 10:21 | ||||||||||||||||||||||||||||
Letzte Änderung: | 14 Jun 2023 14:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags