Hong, Danfeng und Chanussot, Jocelyn und Yokoya, Naoto und Kang, Jian und Zhu, Xiao Xiang (2020) Learning Shared Cross-modality Representation Using Multispectral-LiDAR and Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters, 17 (8), Seiten 1470-1474. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2019.2944599. ISSN 1545-598X.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8976086
Kurzfassung
Due to the ever-growing diversity of the data source, multi-modality feature learning has attracted more and more attention. However, most of these methods are designed by jointly learning feature representation from multi-modalities that exist in both training and test sets, yet they are less investigated in absence of certain modality in the test phase. To this end, in this letter, we propose to learn a shared feature space across multi-modalities in the training process. By this way, the out-of-sample from any of multi-modalities can be directly projected onto the learned space for a more effective cross-modality representation. More significantly, the shared space is regarded as a latent subspace in our proposed method, which connects the original multi-modal samples with label information to further improve the feature discrimination. Experiments are conducted on the multispectral-Lidar and hyperspectral dataset provided by the 2018 IEEE GRSS Data Fusion Contest to demonstrate the effectiveness and superiority of the proposed method in comparison with several popular baselines.
elib-URL des Eintrags: | https://elib.dlr.de/129266/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Learning Shared Cross-modality Representation Using Multispectral-LiDAR and Hyperspectral Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 17 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2019.2944599 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1470-1474 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Cross-modality, feature learning, hyperspectral, multi-modality, multispectral-Lidar, shared subspace learning. | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||||||||||
Hinterlegt am: | 27 Sep 2019 11:27 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 12:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags