Zhuo, Xiangyu und Mönks, Milena und Esch, Thomas und Reinartz, Peter (2019) Facade Segmentation from Oblique UAV Imagery. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, Seiten 1-4. IEEE. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, France. doi: 10.1109/JURSE.2019.8809024. ISBN 978-172810009-8.
|
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8809024
Kurzfassung
Building semantic segmentation is a crucial task for building information modeling (BIM). Current research generally exploits terrestrial image data, which provides only limited view of a building. By contrast, oblique imagery acquired by unmanned aerial vehicle (UAV) can provide richer information of both the building and its surroundings at a larger scale. In this paper, we present a novel pipeline for building semantic segmentation from oblique UAV images using a fully convolutional neural network (FCN). To cope with the lack of UAV image annotations at facade level, we leverage existing ground-view facades databases to simulate various aerial-view images based on estimated homography, yielding abundant synthetic aerial image annotations as training data. The FCN is trained end-to-end and tested on full-tile UAV images. Experiments demonstrate that the incorporation of simulated views can significantly boost the prediction accuracy of the network on UAV images and achieve reasonable segmentation performance.
| elib-URL des Eintrags: | https://elib.dlr.de/129075/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||
| Titel: | Facade Segmentation from Oblique UAV Imagery | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | Mai 2019 | ||||||||||||||||||||
| Erschienen in: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/JURSE.2019.8809024 | ||||||||||||||||||||
| Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
| Verlag: | IEEE | ||||||||||||||||||||
| ISBN: | 978-172810009-8 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Semantic segmentation, UAV imagery, fully convolutional neural network (FCN), deep learning, building information model | ||||||||||||||||||||
| Veranstaltungstitel: | JURSE 2019 | ||||||||||||||||||||
| Veranstaltungsort: | Vannes, France | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 22 Mai 2019 | ||||||||||||||||||||
| Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||||||
| Hinterlegt von: | Mönks, Milena | ||||||||||||||||||||
| Hinterlegt am: | 18 Sep 2019 10:58 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags