Facade Segmentation from Oblique UAV Imagery
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Abstract—

Building semantic segmentation is a crucial task for build-
ing information modeling (BIM). Current research generally
exploits terrestrial image data, which provides only limited
view of a building. By contrast, oblique imagery acquired by
unmanned aerial vehicle (UAV) can provide richer information
of both the building and its surroundings at a larger scale. In
this paper, we present a novel pipeline for building semantic
segmentation from oblique UAV images using a fully con-
volutional neural network (FCN). To cope with the lack of
UAV image annotations at facade level, we leverage existing
ground-view facades databases to simulate various aerial-view
images based on estimated homography, yielding abundant
synthetic aerial image annotations as training data. The FCN
is trained end-to-end and tested on full-tile UAV images.
Experiments demonstrate that the incorporation of simulated
views can significantly boost the prediction accuracy of the
network on UAV images and achieve reasonable segmentation

performance.
Index Terms—Building semantic segmentation, facade parsing,
convolutional neural network, FCN

I. INTRODUCTION

Detailed Building Information Modeling (BIM) is de-
manded in many civil engineering applications such as urban
planning and scene understanding. A crucial step for BIM is
the semantic parsing of buildings, which aims at the pixel-
level interpretation of various structural components, such
as wall, door and window. Manual interpretation of build-
ing components is quite labor-intensive and cost-expensive,
therefore automated building semantic segmentation is of great
importance in urban-scale tasks. Despite having been actively
studied, this problem is still not adequately solved. The main
reason is that many previous approaches define handcrafted
grammars based on the geometry and appearance characteris-
tics of facade components, which cannot robustly cope with
the significant variation of buildings. Besides, external factors
such as occlusions, illumination and perspective differences
also pose difficulty to robust segmentation.

Recent advances in deep learning techniques have opened
up new possibilities in various computer vision tasks such
as object detection and semantic segmentation. A number of
deep neural network-based approaches have been proposed
for facade parsing tasks and demonstrated superior perfor-
mance compared to traditional methods. For the sake of

generalization, deep learning techniques usually require enor-
mous training data. Nevertheless, the current facade parsing
benchmarks such as eTRIMS [1], ECP [2] and CMP [3] are
generally collected from the ground and thus have limited
views of buildings. In contrast, oblique UAV images are able
to offer information of the building and its surroundings at a
larger scale, however, there are rarely UAV imagery databases
annotated at facade level.

To tackle this problem, we propose in this paper a novel
pipeline for semantic facade parsing from UAV oblique im-
agery, as illustrated in Figure 1. Instead of manually anno-
tating UAV imagery, we exploit existing ground-view facade
parsing benchmarks to generate synthetic aerial-view images
as training data. Subsequently, a Fully Convolutional Network
(FCN) [4] is trained end-to-end. In order to improve label
consistency and accuracy at class boundaries, we plug in a
Conditional Random Field (CRF) represented as Recurrent
Neural Network (CRFasRNN) [5], [6] at the end of the FCN,
which combines the strengths of both the CNN and CRF based
graphical model in one unified framework. In the end, the
trained network is used to predict the UAV imagery at pixel
level.

The contributions of this paper lie in two aspects:

1) we proposed simulating aerial views from terrestrial
views based on estimated homography in order to gen-
erate training data.

2) we firstly investigated into building segmentation on
full-tile UAV imagery.

Ground-truth

Simulated views FCN Network

Ground-view image

Fig. 1: Pipeline of the proposed method

II. RELATED WORK

In the past decades, an extensive body of research works
have been done towards the goal of facade segmentation and
can be broadly classified into two categories: model-based
methods [7]-[10] and model-free methods [11]-[13]. With the
dramatic development of deep learning techniques, deep neural
network-based segmentation methods have gained increasingly
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attention in facade parsing applications and demonstrated
dominant performance compared with traditional approaches.
A convolutional neural network based on ConvNet was intro-
duced in [14] for facade parsing (including facade, door, win-
dow and clutter) from terrestrial images, the method achieved
an F1 score of 82% on the eTRIMS dataset. A FCN was used
in [15] for semantic segmentation of facades and vertical edges
of buildings, where a 3D tracking system was proposed to ease
the annotation of training data. A deep convolutional neural
network named ‘“DeepFacade” with a symmetric regularization
term was proposed in [16], where a novel loss function was
proposed for training. This method has outperformed previous
state-of-the-art methods on ECO and eTRIMS datasets. There
are limited previous works in the context of facade parsing
from aerial views. A pipeline of facade parsing from oblique
aerial images was presented in [17], where 2D and 3D features
were both extracted to train a random forest (RF) model for
pixel-level facade segmentation, then the result was refined by
a fully connected conditional random field (CRF). Experiments
showed that the incorporation of 3D features can significantly
improve segmentation accuracy.

The aforementioned works investigate into facade parsing of
homologous imagery, i.e. the images for training and testing
are acquired by the same modalities and therefore have similar
scale and appearance. In contrast, our paper propose to use
existing terrestrial image annotation databases to train CNNs
and then apply the networks to parse UAV images. This can
dramatically save manual labors for creating training data.

III. METHODOLOGY

The performance of deep neural networks usually relies on
sufficient training data. Due to the lack of annotated aerial
facade dataset, we propose in this paper to exploit the existing
ground-view facade datasets to generate training data.

Though it has been demonstrated in [14] that large datasets
are not necessary for training the network when transfer
learning and data augmentation are employed, our segmen-
tation task still faces the challenge of different appearance of
terrestrial imagery and UAV imagery, especially the substantial
difference in viewing direction and scale. To tackle this
problem, we eliminate the scale difference by image down-
sampling and simulate aerial views from terrestrial images by
perspective transformation.

In view of the fact that building facade is generally planar,
the perspective deformation of the facade plane under a
camera motion in close-range can be described by a planar
homographic transform. Although it is not always possible to
retrieve parameters for camera displacement, the deformation
can be approximated by estimating the homography matrix.
As illustrated in Figure 2, (a) shows a facade from ground-
view, (b) shows the simulated aerial view that is computed
with given corner points and (c) depicts the real aerial view
of the facade in a UAV image. Visually, the simulated aerial
view of the facade has high similarity with the real facade in
the UAV image, despite the minor difference of illumination
and misplacement of some non-coplanar objects.

(c) UAV image

(a) Terrestrial image (b) Simulated image

Fig. 2: Comparison between simulated image and real UAV
image.

Motivated by this observation, we propose in this paper
to simulate aerial images from terrestrial images based on
assumptions of the homography. More specifically, the ho-
mographic matrix is estimated from a set of arbitrary copla-
nar points, and the variation of homographies corresponds
to different perspectives. Figure 3 illustrates several views
simulated from a terrestrial image, including left-view, top-
view and right-view. The simulated views can not only enrich
the training data, but also narrow the gap between terrestrial
image and UAV image.

Subsequently, the simulated views are further augmented via
rotation and cropping, resulting in around thousands of patches
of 300 x 300 pixels. These patches are used as input data
for training a fully convolutional neural network [4]. For the
sake of efficiency, we fine-tune the pre-trained weights from
existing networks on our own dataset. More specifically, we
truncate the last layer of the pre-trained network and replace
it with a new softmax layer of 5 categories. In view of the fact
that the CNN usually yields inaccurate class boundaries due
to its large receptive field, we plug in a Conditional Random
Field (CRF) represented as Recurrent Neural Network (CR-
FasRNN) [5], [6] at the end of the FCN, which can provide
more visually appealing results with sharper boundaries.

IV. DATA DESCRIPTION

Terrestrial dataset

Instead of manually annotating UAV images for training, we
exploit existing facades databases, including the “LabelMe-
Facade Image Dataset” [18], [19] and the ‘“eTraining for
Interpreting Images of Man-Made Scenes (¢TRIMS) Image
Database” [1]. The LabelMeFacade Image Dataset consists
of 975 street-view images with 9 annotated object classes,
however, some of the annotations have low accuracy at class
window or door. Thus, we select a subset of 50 accurate
annotations for training. The eTRIMS database has two vari-
ants. In this experiment, we use the 8-Class eTRIMS Dataset,
including 60 images with 8 annotated object classes showing
front-view of buildings.

Images of both databases are taken from ground view and
without rectification, presenting buildings of various styles
from different perspectives. Although the original image an-
notations involve various object classes, some classes are



(b) Simulated left-view

(a) Original image

(c) Simulated top-view (d) Simulated right-view

Fig. 3: Multi-view simulation from terrestrial images.

invisible (e.g. sky) or in the minority (e.g. pavement) in UAV
images. Therefore we merge them into 5 classes, namely
building (including roof and wall), window, door, vegetation
and ground. All the rest classes (e.g. car and sky) are masked
during training.

UAV dataset

The UAV images for testing are selected from existing UAV
datasets, namely the ISPRS “Zeche Zollern” and ““Stadthaus”
datasets [20], showing buildings of both modern-style and
traditional-style. Besides, we also collected facades images of
a detached house in Morschenich, Germany, using a rotary-
wing UAV. Different from the ISPRS datasets where the
windows are featured by transparent glass, some windows of
this house are covered by the blinds and appear to be opaque.
In order to evaluate the segmentation accuracy, we labeled the
test images by hand as ground-truth data.

V. EXPERIMENTS

For each input terrestrial image, we simulated three different
aerial views from it. Subsequently, the simulated images are
further augmented via rotation and cropping, resulting in
3924 patches of 300 x 300 pixels. In order to validate the
effect of view simulation, we also set up a control group by
augmenting the original images into 3924 patches via only
rotating and cropping. The network was fine-tuned in the Caffe
[21] framework using the pretrained weights from FCN-8s [4].
The whole training process took around 7 hours and the trained
model was applied to predict the UAV images. Since the UAV
images for testing have much higher spatial resolution than
the terrestrial images for training, we downsampled the UAV
images to the same scale. In addition, we manually annotated
the test images for accuracy evaluation.

Figure 4 illustrates some of the best segmentation results. It
can be seen that the trained network has achieved reasonable
accuracy at most classes except for door, there can be two
possible reasons for that: first, there are only a few samples
of doors in the training data so that the network can not well
learn the features of doors; second, the doors in UAV images
are often severely deformed or hardly visible, which is difficult
to recognize even for human eyes.

The impact of view simulation is demonstrated in Table
I. Where, the row Original lists the pixel accuracy (in per-
centage) of segmentation using original terrestrial images as
training data, while the row Simulated gives the pixel accuracy

of segmentation using simulated views as training data. It can
be seen that the view simulation can significantly improve the
segmentation accuracy for building facades.

TABLE I: Pixel accuracy (%) for segmentation results

Method Building Window Door Veg Ground
Original 84.92 80.39 37770 91.83 83.11
Simulated 87.66 84.01 41.87  92.60 84.34

VI. CONCLUSION

In this paper we presented a novel pipeline for semantic
building segmentation from UAV images based on a CNN.
By simulating various aerial-view images from terrestrial
images based on estimated homography, we achieved abundant
training data without manually annotating UAV images. Ex-
periments demonstrated that the trained network can achieve
reasonable segmentation performance for UAV images. Be-
sides, the simulated views can also boost the segmentation
accuracy significantly.
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