Madadikhaljan, Mojgan und Bahmanyar, Reza und Azimi, Seyedmajid und Reinartz, Peter und Sörgel, Uwe (2019) Single-Image Dehazing on Aerial Imagery Using Convoultional Neural Networks. In: ISPRS International GeoSpatial Conference, Seiten 1-6. ISPRS. ISPRS International GeoSpatial Conference, 2019-10-12 - 2019-10-14, Tehran, Iran. doi: 10.5194/isprs-archives-XLII-4-W18-687-2019.
PDF
25MB |
Kurzfassung
Haze contains floating particles in the air which can result in image quality degradation and visibility reduction in airborne data. Haze removal task has several applications in image enhancement and can improve the performance of automatic image analysis systems, namely object detection and segmentation. Unlike rich haze removal literature in ground imagery, there is a lack of methods specifically designed for aerial imagery, considering the fact that there is a characteristic difference between the aerial imagery domain and ground one. In this paper, we propose a method to dehaze aerial images using Convolutional Neural Networks~(CNNs). Currently, there is no available data for dehazing methods in aerial imagery. To address this issue, we have created a synthetically-hazed aerial image dataset to train the neural network on aerial hazy image dataset. We train All-in-One dehazing network (AOD-Net) as the base approach on hazy aerial images and compare the performance of our proposed approach against the classical model. We have tested our model on natural as well as the synthetically-hazed aerial images. Both qualitative and quantitative results of the adapted network show an improvement in dehazing results. We show that the adapted AOD-Net on our aerial image test set increases PSNR and SSim by 2.2% and 9%, respectively.
elib-URL des Eintrags: | https://elib.dlr.de/128952/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Single-Image Dehazing on Aerial Imagery Using Convoultional Neural Networks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||
Erschienen in: | ISPRS International GeoSpatial Conference | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-XLII-4-W18-687-2019 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
Verlag: | ISPRS | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Single-image Dehazing, Convolutional Neural Networks, Aerial Imagery, Haze Removal, Hazy Image Generation | ||||||||||||||||||||||||
Veranstaltungstitel: | ISPRS International GeoSpatial Conference | ||||||||||||||||||||||||
Veranstaltungsort: | Tehran, Iran | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Oktober 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 14 Oktober 2019 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt), V - D.MoVe (alt), V - UrMo Digital (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||||||||||||||||||
Hinterlegt am: | 04 Sep 2019 13:20 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags