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ABSTRACT:

Haze contains floating particles in the air which can result in image quality degradation and visibility reduction in airborne data.
Haze removal task has several applications in image enhancement and can improve the performance of automatic image analysis
systems, namely object detection and segmentation. Unlike rich haze removal literature in ground imagery, there is a lack of methods
specifically designed for aerial imagery, considering the fact that there is a characteristic difference between the aerial imagery
domain and ground one. In this paper, we propose a method to dehaze aerial images using Convolutional Neural Networks (CNNs).
Currently, there is no available data for dehazing methods in aerial imagery. To address this issue, we have created a synthetically-
hazed aerial image dataset to train the neural network on aerial hazy image dataset. We train All-in-One dehazing network (AOD-
Net) as the base approach on hazy aerial images and compare the performance of our proposed approach against the classical model.
We have tested our model on natural as well as the synthetically-hazed aerial images. Both qualitative and quantitative results of
the adapted network show an improvement in dehazing results. We show that the adapted AOD-Net on our aerial image test set
increases PSNR and SSim by 2.2% and 9%, respectively.

1. INTRODUCTION

Haze is an atmospheric phenomenon in which there are tiny
particles coming from dust, volcanic ashes, foliage exudation,
combustion products, etc. which have the size varying from
0.01 to 10 micro meters (McCartney, 1976). When utilizing
aerial images for different applications, on the one hand, haze
could be a reason to decrease the performance of automatic im-
age analysis systems such as image recognition, object detec-
tion, segmentation and tracking (Li et al., 2017, Azimi et al.,
2018b, Azimi et al., 2018a). On the other hand, it is not always
possible to capture haze-free images as some amount of haze
can always be floating in the air. Therefore, various dehazing
methods have been proposed in order to reconstruct haze-free
images from single hazy images.

Most of these algorithms deal with ground imagery, whereas
the techniques focused on dehazing of aerial images are a few.
The characteristics of the ground and aerial imagery scenes are
very different. For instance, the sensor distance to the objects
within the scenes (depth), the image contents, the ground res-
olution, and the ratio between the depth of each pixel and the
height differences between the objects. Figure 1 exemplifies
ground and aerial images with their hazy variants. As it can be
observed, while haze is homogeneously spread over the aerial
scene, in the room image, haze increases by the depth of the
image pixels. In short, there is a need for adapting the ground
imagery dehazing algorithms for developing new aerial image
dehazing algorithms.

There are several single-image dehazing methods based on
prior knowledge and convolutional neural network (CNN),
which can yield a dehazed and clear image from a single hazy
image as input. As one of the primary and effective meth-
ods, dark channel prior-based dehazing technique (Kaiming He,
2011) benefits from the statistics of the outdoor scenes, in which

(a) Clear ground image (b) Hazed ground image

(c) Clear aerial image (d) hazed aerial image

Figure 1: Sample ground image and aerial image with
homogeneous hazy versions

at least in one color channel there exist pixels with very low
intensities. Taking this prior as a starting point and together
with estimating the depth information, the dark channel method
recovers the haze-free image from a single input hazy image.
Recently, conditional generative adversarial networks (cGAN)
was proposed for single-image dehazing. The authors in (Li et
al., 2018) used a cGAN network architecture with a generator to
create haze-free images and a discriminator to identify whether
the image is realistic or not. The authors also added a percep-



tual regularization based on the VGG network’s feature-maps
and applied L1 regularized gradient prior in order to avoid arti-
facts and color distortions in the dehazed images. A proposed
method based on CycleGAN (Engin et al., 2018) uses two gen-
erators and two discriminators in the network to add or re-
move haze to the images. This method further takes advantage
of cycle-consistency and perceptual losses to refine texture in-
formation and improve the final results. The authors in (Zhang
et al., 2018) proposed a perceptual pyramid deep network for
image dehazing, where the network architecture benefits from
dense and residual blocks. It is composed of an encoder to map
the image into a latent feature space and a decoder to transfer
the features back from the latent space and generate the haze-
free image. Not only the deep neural networks, but the shallow
neural networks with quite simple structures have shown prom-
ising results in the image dehazing scenarios. For example, the
widely-used All-in-One Dehazing Network (AOD-Net) (Li et
al., 2017) achieves very high accuracy by its simple network
design and a reformed mathematical formulation of the haze
equation.

Due to the outperforming results of the AOD-Net between state
of the art methods, we have used this dehazing network in our
experiments. The original AOD-Net was trained on a synthetic-
ally hazed ground image datasets such as NYU depth V2 (Sil-
berman et al., 2012). In order to apply AOD-Net to aerial im-
agery, one could either use the pre-trained model or train the
model on an aerial image haze dataset. Due to the aforemen-
tioned differences between the ground and aerial images, train-
ing the network should result in a more accurate haze removal.

In order to train AOD-Net, we need an aerial image haze data-
set containing hazy images and their ground truth. To the best
of our knowledge, there is no publicly available dehazing aer-
ial image dataset. Therefore, for our experiments, we create
a synthetically-hazed aerial image dataset. It is not practically
possible to have naturally hazed aerial image dataset. In the aer-
ial imagery, the atmospheric conditions of the different parts of
the imaging area could be different. Thus, the captured images
are either with or without haze. While for the haze-free im-
ages there is no hazy equivalent, for the hazy images there is no
haze-free image as ground truth. Having a second acquisition
to fulfill the required data is very complicated and demanding.

Our aerial haze dataset consists of haze-free aerial images ac-
quired by German Aerospace Center (DLR) in 2018 in the
framework of VABENE++ project using the 3K camera sys-
tem (Kurz et al., 2011) mounted on a helicopter flying over the
city of Munich, Germany.

As a prerequisite to create synthetic hazy images, the depth of
each pixel (the euclidean distance of the corresponding pixel to
the object point on the ground) should be computed. To this
end, the camera information from the flight and the co-linearity
equation are used. Using the computed depth map, the hazy
images are generated based on the atmospheric scattering equa-
tion which is explained in Section 2.1. In the next step, we train
AOD-Net on the created aerial haze dataset. In order to eval-
uate the trained models, we split the dataset into train and test
sets. The performance of the dehazing models is then evaluated
using the images in the test set and some natural hazy images.
Training AOD-Net on our dataset shows a significant improve-
ment in both PSNR and SSim metrics as compared to directly
applying the pre-trained model.

We have organized our paper as follows. In Section 2, we
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Figure 2: Depth of the pixels (d(x)) and the height variations on
the ground ∆H in aerial imagery (note that ∆H � d(x)).

explain the generation of new dataset together with assump-
tions and formulations in detail. We shortly describe AOD-Net
in Section 3 and then we present the experiments and results
followed by discussion in Section 4. Finally, we conclude the
paper in Section 5.

2. SYNTHETICALLY HAZED AERIAL IMAGE
DATASET GENERATION

Haze in the image can be seen in the locations where there is a
gray effect due to the existing particles which cause the light to
be scattered. Depending on how the image has been captured,
the haze appears in the image differently. The objects in the
ground imagery are relatively closer to the camera compared to
the aerial case. Hence, the spatial resolution of a ground image
is significantly higher than aerial one. On the other hand, the
scene coverage in aerial imagery is often larger than ground
images. When capturing aerial images on the airplanes, the
cameras are moving most of the time, so blurring effects are
unavoidable. When flying over a city, the weather or atmo-
spheric conditions may differ in different parts of the city, espe-
cially when flying over megacities or even farmlands. Similar
objects in the ground imagery appear differently in aerial im-
agery. In fact, one of the most important dissimilarities between
these two imagery domains is the ratio of height (or depth) dif-
ferences of the objects in the scene and their distance to the
camera. For instance, in flights with 1000m altitude, the height
difference between building and roads in the image would be
around 5 meters on average in the cities with not much of sky-
scrapers. However, when taking a photo from a scene in a room,
the ratio of height/depth differences and the distance to the cam-
era is close to 1:1 (see Figure 2).

All of the aforementioned deviations of the two imagery do-
mains create the need to revise the hazy image generation pat-
tern. Therefore, we first go through the atmospheric scattering
equation which models the generation of haze on image in Sec-
tion 2.1. Afterward, we mathematically compute the depth map
of the images as a prerequisite to hazy image generation in Sec-
tion 2.2. We finally provide the generated hazy images in Sec-
tion 2.3.

2.1 Atmospheric Scattering Model

In order to reconstruct the haze in an image, the Atmospheric
Scattering Model is defined as

Ix,y = Jx,ytx,y +A(1− tx,y) (1)



where I = Received radiance of a hazy image,
J = True scene radiance,
t = Medium transmission,
A = Global atmospheric light,
x, y = Pixel location.

Equation (1) shows that the true scene radiance is attenuated
when traveling through the air to reach the camera. The illu-
mination from the atmosphere affects the traveling light beam
by adding the Airlight (A) term. In homogeneous atmospheres,
the medium transmission term can be calculated by

tx,y = e−βdx,y , (2)

where β = Scattering coefficient of the atmosphere
dx,y = Depth of each pixel.

Almost all of the single-image dehazing algorithms (Li et al.,
2017, Li et al., 2018, Engin et al., 2018, Zhang et al., 2018,
Min et al., 2019) use this model to reconstruct haze-free image
by estimating the transmission map, airlight or combination of
them.

2.2 Depth Image Generation

As shown in Equation (2), the key to generate hazy images is
the depth map. Assuming that the depth map is provided, given
β value, the transmission map for each pixel can be calculated.
Then, we put the transmission values into Equation (2) and for
different values of A, we construct different levels of hazy im-
ages.

In order to have the depth for each pixel, we need the 3D world
coordinates of each pixel (X,Y, Z) on the ground. Then, the
depth or Euclidean distance of the object point to the principal
point of the camera can be calculated using

dx,y =
√

(Xx,y −Xc)2 + (Yx,y − Yc)2 + (Zx,y − Zc)2,
(3)

where (Xx,y, Yx,y, Zx,y) = 3D world coordinates of each pixel,
(Xc, Yc, Zc) = 3D world coordinates of principal point,
dx,y = Depth of each pixel.

Equation (3) shows that to have the depth of each pixel, it is
necessary to have 3D coordinates of each pixel together with the
3D coordinate of the principal point of the camera in the same
coordinate system, namely world coordinate system. There are
two strategies to obtain the 3D position of each pixel on the
ground:

1. The first one is to use Digital Surface Model (DSM) of the
corresponding image. DSM is a geo-referenced raster data
of the same size and resolution to the image containing
ground height of each pixel. As it is geo-referenced, we
have X and Y coordinates of the pixels and Z is stored
inside the pixel values of the DSM.

2. As the second option, we can use the camera information
such as focal length, flight height, rotation angles, etc. to-
gether with the ground height of each pixel (Z) to calculate
X and Y for each pixel (using well-known ”Collinearity
Equation”).

In our case, the DSM of the whole city is available, but we face
the problem of matching the position and resolution of each im-
age with its corresponding area on whole DSM data. Hence, we
need to crop each area of the DSM to cover each image location
and match the spatial resolution of the pixels inside the DSM
with the ones of image. Therefore, we use a simple strategy
to obtain the ground coordinates and therefore the depth map.
As can be seen from Figure 2, the flight height is significantly
larger than the height differences of objects e.g., buildings on
the ground. Consequently, when computing the Euclidean dis-
tance, there is no significant difference in depth for the neigh-
boring objects. Thus, the only varying depth parameter is the
distance from the nadir line to the ground. Therefore, it is lo-
gical to consider the height of all areas to be similar.

According to Figure 2 we have

∆H � d(x). (4)

Therefore,
Hi = Zavrg, ∀Hi, (5)

where Hi = Ground height of the image pixels,
Zavrg. = The average ground height of the region.

Considering the ground height of all pixels in image similar
to each other, i.e., the average height of the region, X and Y
ground coordinates of the pixels can be computed by

Xx,y = Xc + (Zx,y − Zc)
r11(x− xc) + r21(y − yc)− r31c
r13(x− xc) + r23(y − yc)− r33c

,

(6)

Yx,y = Yc + (Zx,y − Zc)
r12(x− xc) + r22(y − yc)− r32c
r13(x− xc) + r23(y − yc)− r33c

,

(7)

where (xc, yc) = pixel coordinates of principal point,
r11, r12, ..., r33 = Rotations of the camera at
the capture time,
c = Focal length of the camera,
Zx,y = Zavrg., ∀x, y in the image.

Since all the camera parameters are available for all the im-
ages, by taking the average altitude of the region as height of
all pixels, we can calculate the world coordinates of each pixel
and use them in Equation (3) to obtain the depth map.

2.3 Hazy Images

We can then insert different values for β and A and create dif-
ferent hazy images. However, there are two points to be noted.
Firstly, the depth in our images is around 1000 meters, which is
totally different from the ground imagery scenarios. As a result,
the values that should be inserted for the medium transmission
and global atmospheric light should be different as well. In our
case, we chose these values β = {0.0005, 0.0015, ..., 0.002}
and A = {230, 240, 250}.

Secondly, by assuming the atmosphere to be homogeneous and
the heights to be similar, the haze on the images appear ho-
mogeneously. In our case, in the images collected from dif-
ferent flight campaigns, the haze is almost always homogen-
eous. This is valid for the cases where there is no pollution



(a) Haze-free image

(b) Hazed image with β = 0.0005 and A = 230

(c) Hazed image with β = 0.001 and A = 250

Figure 3: Synthetically and homogeneously hazed aerial image

source around because when this is not the case. For example,
when there is a factory in the area, the smoke coming out of the
smokestack of the factory causes the density of the haze or pol-
lution to be greater in some parts; therefore, the assumption of
homogeneous atmosphere or haze does not hold anymore. This
applies also for the flights over mountains and valleys, which
there might be haze on valley, but on top of the mountain is
clear, making the haze not homogeneous In Figure 3a, Figure 3b
and Figure 3c, you can see a haze-free image, together with two
hazy versions of it.

The training images in aerial hazy image dataset contain hazy
images for a single image in 9 different levels. In our experi-
ments, 140 images are chosen as training and 17 images as test
sets. Flight height is around 1600 meters above the sea level,
where the average ground height is 600 meters. The view points
are almost nadir looking and the images consist of urban, rural,
and some forest areas. The camera in this flight is a hyperspec-
tral camera with 30 cm ground spatial resolution and 88 mm fo-
cal length.

3. INTRODUCTION TO AOD-NET

All-in-One Dehazing Network called AOD-Net (Li et al., 2017)
is a lightweight CNN-based method to dehaze single-images. It

Single hazy image Dehazed image
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J(x)=K(x)I(x)-K(x)+b

AOD Network

Figure 4: The General Structure Of AOD-Net
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Figure 5: The K(x) estimation module

consists of two modules, first, there is a CNN network estim-
ating the K(x) value and then revisit the haze-free image from
the estimated K(x). In the second step, the haze-free image is
restored using

J(x) = K(x)I(x)− k(x) + b. (8)

The network structure includes two main modules as illustrated
in Figure 4. The K(x) estimation module which is shown
in Figure 5 unifies two parameters of A and tx,y to be estim-
ated at once. To train the dehazing network, there should be
hazy images from the scene as well as the haze-free or ground
truth images from the same scene under the same conditions
(illuminations, light, camera positions, etc.) available. As dis-
cussed in section Section 2.1, the depth of each pixel is a pre-
requisite to generate synthetic hazy images. There are sev-
eral image datasets available that provide images from differ-
ent indoor scenes and the corresponding depth image which is
mostly produced using either laser scanners or stereo-matching
techniques. The AOD-Net authors have used the well-known
NYU depth V2 (Silberman et al., 2012) and Middlebury stereo
database (Scharstein, Szeliski., 2003) dataset to train their net-
work. They use using 27,256 and 3,170 images from NYU as
training and validation sets respectively with β differing from
{0.4,0.6,0.8,1.0,1.2,1.4,1.6} and A in range of [0.6,1.0] during
the AOD-Net training. The network converges after 10 epochs.
In our experiments, we use 10 epoch also for the sake of com-
parisons.

4. EXPERIMENT AND RESULTS

In this section, we provide more details on the experiments
and the achieved outcomes. The results are compared by their
PSNR and SSim with their corresponding ground truth im-
ages. To have a fair comparison, the number of images and
the batch size of training data remain similar when training the
network on aerial hazy image dataset and NYU Depth V2 data-
sets. The experimental results on the test set show 9% quantitat-



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) PSNR = 19.71
SSim = 0.82%

(j) PSNR = 9.8
SSim = 0.15%

(k) PSNR = 14.04
SSim = 0.55%

(l) PSNR = 9.51
SSim = 0.27%

(m) PSNR = 22.27
SSim = 0.83%

(n) PSNR =11.14
SSim = 0.27%

(o) PSNR = 15.2
SSim = 0.72%

(p) PSNR = 10.66
SSim = 40%

Figure 6: Ground truth images, together with their hazy and dehazed versions. The first row: Haze-free images, the second row:
Hazed version of the same images in different levels, the third row: Dehazed images using AOD-Net which is trained on NYU dataset,

and the fourth row: Dehazed images using adapted AOD-Net

ive improvement on PSNR and 2.2 on SSim, achieving a more
natural-looking dehazed image.

4.1 Experiment Setup

The size of the original aerial images is 5616× 3744 px. The
empirical results show that when trying to balance the speed
of the network in training, the GPU consumption capacity and
the information flow into the network, it is optimal to crop the
images into 1024× 1024 px patches. We crop 140 training and
validation images 24 times with 1024× 1024 px patch size and
haze in 9 levels. In total, we obtain 30,240 training and valida-
tion patches. We use Titan X GPUs in our experiments. It takes
around 5 days to train the network on 27,240 training images
and validate on 3,000 images for 10 epochs with the learning
rate of 0.0001. The loss of the network is mean squared error
and we keep the Adam optimizer same as the classical AOD-
Net structure during the training.

In order to have a fair comparison, we train both AOD-net on
NYU depth V2 datasets as well as our aerial hazy image data-
set with the same training configurations and parameters. The
test set includes 17 images from different flight campaigns, col-
lected from different years and locations in Germany. Some of

these images together with their dehazed versions have been il-
lustrated in Figure 6. We use the Peak Signal To Noise Ratio
(PSNR) and Structural Similarity (SSim) indicators as widely
used metrics for dehazing performance evaluation (Li et al.,
2017, Li et al., 2018, Engin et al., 2018, Zhang et al., 2018,
Min et al., 2019). For the sample dehazed images, the PSNR
and SSim comparisons are mentioned in captions of Figure 6.
In Table 1, we calculate the average PSNR and SSim for the
entire test set after being dehazed by two AOD-Net dehazing
algorithms. Based on the results, we can infer that the dehazing
results of the adapted AOD-Net are significantly superior.

4.2 Results And Discussion

In Figure 6, the dehazed images together with their hazy ver-
sions are shown. From (e) to (h), we can that the haze level is
decreasing. Despite the fact that there are color distortions in
both dehazed results, the images which are dehazed by adap-
ted AOD-Net have more a natural-looking appearance and are
more clear (see image Figure 6 (i) and (m)). As mentioned in
the description of the Figure 6, both PSNR and SSim values of
the sample images increase during by adapted AOD-Net. The
highest jump in PSNR and SSim belongs to the image (m) and
(o), respectively.



AOD-Net Classic AOD-Net Adapted
Average PSNR 14.08 16.28
Average SSim 0.50 0.59

Table 1: The average PSNR and SSim of the test set when tested
on Classical and Adapted AOD-Net

To have a general improvement record, we compute the average
PSNR and SSim metrics as shown in Table 1. The dehazing
performance on the test set of our aerial hazy image dataset has
been refined by improving PSNR from 14.08 to 16.28 and SSim
from 0.50 to 0.59.

We also test the networks on naturally hazed aerial images, The
example for this comparison is shown in Figure 7. Since there
is no ground truth available, we have to limit the comparing res-
ults to the appearance of the dehazed image. As can be seen,
the removal seems to be almost similar in these two methods,
but if we zoom into the image, due to the color distortion, the
shadow areas using original AOD-Net in left Figure 7(b) be-
comes black, which is not the case for the adapted AOD-Net in
right Figure 7(b).

In most of the dehazing results so far, the artifacts like structural
damage, color distortion, and unrealistic appearance of the col-
ors due to color range shift or over-enhancement appear (Min et
al., 2019). Even though in our case, the unrealistic sharpening
problem has been improved a bit, it still present in the image
and it may seem pleasing for human eye to look at the images
with nicely sharped colors, but when it comes to the similarity
comparison of the image to its ground truth, we can consider it
as a disadvantage for the dehazing algorithms.

5. CONCLUSION AND FUTURE WORK

One of the ways to enhance aerial image quality is to use de-
hazing algorithms. In this work, we propose to use a deep
learning method, but a dataset with aerial images is needed
to develop a devoted algorithm for aerial imagery. Due to the
different characteristics of the aerial and terrestrial imageries,
we created a new dataset containing aerial hazy images with
homogeneously- synthetically hazed images to train the dehza-
ing network. We create our aerial hazy image dataset by ob-
taining the depth map first and afterward hazy images. We train
AOD-Net on our aerial hazy image dataset as aerial imagery
domain and compare the results with the original dehazing res-
ults. Both qualitative results on the test set as well as the natural
hazy images show significant improvements and the quantitat-
ive indicators of PSNR and SSim enhance by 2.2% and 9% re-
spectively.

The dehazing results can be further improved using more im-
ages and more haze levels, as well as the images with different
flight height and inhomogeneous distribution of the haze on it.
Adding further layers to the network may also improve the res-
ults and several other loss functions such as perceptual loss may
overcome the color distortion and artifact problems.
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