Waxenegger-Wilfing, Günther und Dresia, Kai und Deeken, Jan C. und Oschwald, Michael (2020) Heat Transfer Prediction for Methane in Regenerative Cooling Channels with Neural Networks. Journal of Thermophysics and Heat Transfer. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.T5865. ISSN 0887-8722.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/1.T5865
Kurzfassung
Methane is considered being a good choice as a propellant for future reusable launch systems. However, the heat transfer prediction for supercritical methane flowing in cooling channels of a regeneratively cooled combustion chamber is challenging. Because accurate heat transfer predictions are essential to design reliable and efficient cooling systems, heat transfer modeling is a fundamental issue to address. Advanced computational fluid dynamics (CFD) calculations achieve sufficient accuracy, but the associated computational cost prevents an efficient integration in optimization loops. Surrogate models based on artificial neural networks (ANNs) offer a great speed advantage. It is shown that an ANN, trained on data extracted from samples of CFD simulations, is able to predict the maximum wall temperature along straight rocket engine cooling channels using methane with convincing precision. The combination of the ANN model with simple relations for pressure drop and enthalpy rise results in a complete reduced order model, which can be used for numerically efficient design space exploration and optimization.
elib-URL des Eintrags: | https://elib.dlr.de/128908/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Heat Transfer Prediction for Methane in Regenerative Cooling Channels with Neural Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 10 Januar 2020 | ||||||||||||||||||||
Erschienen in: | Journal of Thermophysics and Heat Transfer | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.2514/1.T5865 | ||||||||||||||||||||
Verlag: | American Institute of Aeronautics and Astronautics (AIAA) | ||||||||||||||||||||
ISSN: | 0887-8722 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Heat Transfer Prediction, Neural Networks, Machine Learning, Supercritical Fluids, Rocket Engine Cooling Channels | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt LUMEN (Liquid Upper Stage Demonstrator Engine) | ||||||||||||||||||||
Standort: | Lampoldshausen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Raketenantriebe | ||||||||||||||||||||
Hinterlegt von: | Waxenegger-Wilfing, Günther | ||||||||||||||||||||
Hinterlegt am: | 27 Aug 2019 08:03 | ||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 15:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags