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Methane is considered a good choice as a propellant for future reusable launch systems.However, the heat transfer

prediction for supercriticalmethane flowing in the cooling channels of a regeneratively cooled combustion chamber is

challenging. Because accurate heat transfer predictions are essential to design reliable and efficient cooling systems,

heat transfermodeling is a fundamental issue to address. Advanced computational fluid dynamics (CFD) calculations

achieve sufficient accuracy, but the associated computational cost prevents an efficient integration in optimization

loops. Surrogatemodels based on artificial neural networks (ANNs) offer a great speed advantage. It is shown that an

ANN, trained on data extracted from samples of CFD simulations, is able to predict the maximum wall temperature

along straight rocket engine cooling channels usingmethane with convincing precision. The combination of the ANN

modelwith simple relations for pressure drop and enthalpy rise results in a complete reduced-ordermodel, which can

be used for numerically efficient design space exploration and optimization.

Nomenclature

A = channel area, mm2

AR = aspect ratio
b = channel width, mm
Dh = hydraulic diameter, mm
d = wall thickness, mm
f = friction factor
G = mass-flow density, kg ⋅ s−1 ⋅m−2

h = channel height, mm
h = specific enthalpy, J ⋅ kg−1
k = number of categories-
l = channel length, mm
_m = mass-flow rate, kg ⋅ s−1
p = pressure, Pa
_Q = heat flow rate, W

_q = heat flux, W ⋅m−2

Re = Reynolds number
r = wall roughness, μm
T = temperature, K
v = flow velocity, m ⋅ s−1
y� = dimensionless wall distance
z = flow length, mm
α = regularization parameter
ϵ = learning rate
θ = network parameter
ρ = density, kg ⋅m−3

ϕ = activation function
Ω = weight penalty term

Subscripts

b = bulk

i = total number of trainable weights
in = inlet
j = summation index
n = dimension of input vector
out = outlet
stat = static
tot = total
w = wall

I. Introduction

A LTHOUGH most liquid rocket engines that have flown until
now used liquid oxygen (LOX)/hydrogen (LH2), liquid oxygen/

kerosene (rocket propellant-1 or RP-1), or a hypergolic propellant
combination like nitrogen tetroxide (NTO)/monomethylhydrazine
(MMH) [1,2], several countries have started to develop engines that
use methane (CH4) as fuel and oxygen as oxidizer in recent years. On
the one hand, there are development projects by national agencies such
as the Japan Aerospace Exploration Agency [3], the ESA [4], NASA
[5], and DLR, German Aerospace Institute [6]; on the other hand,
various rocket engines are developedby private companies such asBE-
4 by Blue Origin and Raptor by SpaceX. Oxygen/hydrogen offers the
highest specific impulse, but the low density of hydrogen leads to large
rocket stages. In addition, the low boiling temperature of hydrogen at
20 K makes the handling very difficult and increases operating costs.
Kerosene is much denser than hydrogen and easier to handle. Dis-
advantages are a lower specific impulse and that kerosene may coke
and form deposits, which is problematic in terms of engine reuse. The
main drawback of nitrogen tetroxide/monomethylhydrazine is its
extreme toxicity. The propellant combination of oxygen/methane has
many favorable characteristics; e.g., methane is six times as dense as
hydrogen, is easier to handle, and has preferable coking temperature
limits [7] and low toxicity. Furthermore, oxygen/methane offers a
slightly higher specific impulse than oxygen/kerosene [8].
Despite thementioned advantages, the prediction of heat transfer for

methane flowing in the cooling channels of a regeneratively cooled
combustion chamber has proven challenging [9], but it is needed for an
efficient cooling system design. Regenerative cooling performance is
especially important for engines,which are reusable or use an expander
(bleed) power cycle,where the energyabsorbed in the cooling channels
drives the turbopumps [10,11]. Themain difficulty for the heat transfer
prediction of methane is that it usually enters the cooling channels at
supercritical pressure but subcritical temperature. It is then heated up in
the cooling channels and, most times, crosses the Widom line [12]
close to the critical point. The Widom line extends the liquid–vapor-
coexistence line into the supercritical region by using the thermody-
namic locus of the specific heat maxima [13]. Strong changes in fluid
properties at the Widom line introduce various physical phenomena
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(e.g., heat transfer deterioration [14,15]), which influence the heat
transfer. In contrast to that, hydrogen usually enters the cooling system,
which is already in a gaslike state, with pressures and temperatures far
above the critical values [16].
Severalmethods exist to study the regenerative coolingof liquid rocket

engines. A simple approach is to use semiempirical one-dimensional
correlations to estimate the local heat transfer coefficient [17,18]. By
using an energy balance for each combustion chamber wall section, the
wall temperatures can be estimated. The maximum wall temperature,
which occurs at the hot-gas side, is an especially critical parameter
because it determines the fatigue life of the chamber [19].Theadvantage
of such simple relations is the negligible computation time. However,
one-dimensional relations are not able to capture all relevant effects that
occur in asymmetrically heated channels, like thermal stratification [20]
or the influence of turbulence and wall roughness. Correction factors
and quasi-two-dimensional models have been developed [21], but only
full three-dimensional computational fluid dynamics (CFD) calcula-
tions achieve convincing accuracy. Many papers have been published
on CFD simulations for supercritical methane flowing in rocket engine
cooling channels [22–25], and CFD results were compared with exper-
imental data [26,27]. Themain disadvantage of three-dimensional CFD
simulations is that they are not suitable for design optimization, design
space exploration, and sensitivity analysis due to their large calculation
effort.
By constructing surrogatemodels using samples of the computation-

ally expensive calculation, one can alleviate this burden. However, it is
crucial that the surrogate model mimics the behavior of the simulation
model as closely as possible and generalizes well to unsampled loca-
tions while being computationally cheap to evaluate. Artificial neural
networks (ANNs) are known to be universal function approximators
[28] and have been successfully applied as surrogate models in a
number of domains [29,30]. These models have been applied to the
heat transfer prediction of supercritical fluids too [31–33]. The possibil-
ity to use ANNs with multiple hidden layers allows the generation of
surrogatemodels, even for high-dimensional problems, given a suitable
number of samples. In this paper, for the first time, an ANN is trained
with data extracted from samples of CFD simulations for heat transfer
prediction of supercriticalmethane. The rest of the paper is organized as
follows: Sec. II describes the basics of machine learning (ML) and the
theory of ANNs. A procedure to generate suitable training data byCFD
calculations is presented in Sec. III. Section IV discusses the proposed
ANNand reports the results.SectionVshowshow theANNcanbeused
as a building block of a complete reduced-order model for cooling
channel flows, and Sec. VI provides concluding remarks. A good deal
of the material presented in the paper can also be found in the master’s
thesis of Dresia, which was supervised by Waxenegger-Wilfing [34].

II. Artificial Neural Networks

ANNs are models that belong to the field of ML. To understand
ANNs well, a basic understanding of the principles of ML is needed.
The following section briefly elaborates on the basic theory.
A comprehensive presentation can be found in the book of
Goodfellow et al. [35].

A. Machine Learning Basics

The field of ML studies algorithms that use datasets to change parts
of amathematicalmodel in order to solve a certain task instead of using
fixed predefined rules. The mathematical model is often a function,
whichmaps input data to output data, and the algorithmhas to learn the
adjustable parameters of this function in such a way that the mapping
has the desired properties. In other words, ML is primarily concerned
with the problem of finding and adjusting functions that usually have a
large number of parameters. ML algorithms can be divided into
supervised and unsupervised. In supervised learning, the training data-
set contains both the inputs and the desired outputs, and the math-
ematical model can (among other things) be used for classification or
regression. In a classification task, the model is asked to identify to
which set of categories k a specific input belongs. Assuming that each
example of the input data is represented as a feature vector x ∈ Rn,
the learning algorithm is asked to produce a suitable function

f:Rn → f1; : : : ; kgwith a discrete target output. Awell-known exam-
ple of a classification task is object recognition in images. In a
regression task (e.g., with a single explanatory variable), the goal is
to predict a numerical value given some input. To solve this task, the
learning algorithm is asked to output a function f:Rn → R. Unsuper-
vised learning algorithms receive datasets without target outputs and
learn useful properties of the structure of these datasets.
The central challenge inML is that the model must perform well on

new, previously unseen input data. The capability to perform well on
those inputs is called generalization. Generalization is also central to
understand the relationship between mathematical optimization and
ML. Although optimization algorithms can be used to minimize some
error measure on the training set, ML tries to reduce the generalization
error, which is also called the test error. During training, one must
prevent two central issues. Underfitting occurs when the model is not
able to obtain a sufficiently low error on the training data. Overfitting
occurs when the gap between the training error and the test error is too
large; thus, themodel is not able to generalize. The ability of amodel to
fit a wide variety of functions is called the model’s capacity. Models
with low capacity may have problems fitting the training data. Models
with high capacity can solve complex tasks; but, when their capacity is
higher than needed, they may overfit by memorizing properties of the
training data that do not work well on the previously unseen test data.
MLachievesgood resultswhen the capacityof themodel is appropriate
for the true complexity of the relevant task and the amount of training
data. However, for practical applications, it is nearly impossible to
guess the model with an appropriate capacity. Furthermore, models
with higher capacity in combination with proper methods to prevent
overfitting often work better than less complex models. Modifications
of a learning algorithm that are intended to reduce its generalization
error, possibly by an increase in training error, are known as regulari-
zation. Instead of reducing the capacity of the model, one can, for
example, change the learning algorithm to express the preference of
one function over another.
Most ML models and algorithms have hyperparameters that are

not adapted by the learning algorithm but can be used to control the
outcome, for example, by changing the capacity of a model. Optimal
values of hyperparameters and estimates for the generalization error
are found by splitting the available data into three disjoint subsets.
The training set is used to adapt the trainable parameters by the
learning algorithm. The second dataset, which is the validation set,
exists to estimate the generalization error during or after training,
allowing for hyperparameter tuning with the goal to find a good
balance between performance and avoidance of overfitting. How-
ever, the estimate of the generalization error of the finalmodel will be
biased because the validation data were used to select the model.
Thus, a third dataset, which is the test set, is used to estimate the real
generalization error.

B. Theory of Artificial Neural Networks

One successful family of models used for ML is that of ANNs.
ANNs are inspired by the functionality of biological brains,which are
made of a huge number of biological neurons that work together to
control the behavior of animals and humans. A collection of con-
nected units, called artificial neurons, forms the basis of an ANN.
Furthermore, artificial neurons looselymodel biological neurons and
are usually represented by nonlinear functions acting on theweighted
sum of its input signals. Let in � �in1; in2; : : : ; inn� denote an input
vector, w � �w1; w2; : : : ; wn� a weight vector (where n is the input
dimension), b a bias term, and ϕ an activation function; then, the
output (out) of a single artificial neuron can be written as

out � ϕ

 Xn
j�1

wjinj � b

!
(1)

The bias term b can be used to shift the activation function ϕ.
A rectified linear unit (ReLU), where ϕ�x� � maxf0; xg, is the most
common activation function in modern ANNs. Trainable parameters
are usually the weights and biases of the neurons. Mostly, the con-
nectivity architecture of such ANNs is layered with an input layer,
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multiple hidden layers, and an output layer. ANNs are called feedfor-
ward networks when no feedback connections are present. One can
prove that a feedforward network with a single hidden layer can
approximate any reasonable function if the hidden layer has enough
neurons. Nevertheless, using multiple hidden layers adds exponen-
tially more expressive power. Among other things, each layer can be
used to extract increasingly abstract features and hencemore suitable
representations of the input data. AnANNwithmore than one hidden
layer is called a deep ANN. Such a deep ANN can discover a suitable
hierarchy of representations during training and, as a result, learn
and generalize better. During training or learning, the algorithm
requires a measure for the quality of its prediction to adjust the
parameters of the model. In regression problems, a typical choice
for the cost function is the mean squared error between the predicted
values and ground truth:

J�θ� � 1

2m

X
x

�y�x� − f�x; θ��2 (2)

where x and y�x� are the input vector and the ground truth, respec-
tively, of a training data point; m is the total number of training data
points; and f�x; θ� is the predicted output of the model according to
its parameters θ. For ANNs, the model parameters θ are given by all
weights and biases associated to the neurons. Training corresponds to
finding optimal parameters θ such that J�θ� is minimal. Often, one
adds an extra term for regularization:

~J�θ� � J�θ� � αΩ�θ� with

Ω�θ� � 1

2
kwk22 �

1

2
�w2

1 � w2
2 � : : : � w2

i � (3)

where w denote the weights of the ANN; i is the total number of
trainable weights; and α is an additional hyperparameter, which
controls the amount of regularization. The extra term penalizes larger
network weights. The procedure is known as weight decay or L2

regularization. Because of the nonlinearity ofANNs, J�θ� [or ~J�θ�] is
a nonconvex function. One can still use gradient-based optimizers,
but there is no global convergence guarantee. Nevertheless, the train-
ing algorithms of ANNs are mostly based on using the gradient to
descend the cost function to lower values. After initializing all train-
able parameters (for example, by small random numbers), the gra-
dient of the cost function is used to update the parameters by

θ 0 � θ − ϵ∇J (4)

where ϵ is a small parameter called the learning rate that ensures that
the change in θ is small. The gradient ∇J of the cost function with
respect to θ can efficiently be computed with the backpropagation
algorithm. For large training datasets, gradient computation can still
be very time consuming. It turns out that the efficiency can be
improved by calculating the gradient on small randomized subsets
of the training set, called minibatches, and applying updates to the
parameters more often. This procedure is called stochastic gradient
descent. Finally, one pass of the full training set is called an epoch.
The use of ANNs for surrogate modeling has advantages and

disadvantages. A big advantage is that ANNs can capture the behav-
ior of complicated functions because they can scale to large datasets
and generalize nonlocally [35]. Especially if a deep network can
extract the underlying factors, ANNs are well suited even for high-
dimensional problems. The biggest disadvantage is that ANNs
mostly act as black boxes. The field of explainable artificial intelli-
gence exists to make models like ANNs more explainable and
interpretable, but it is still in its infancy.

III. CFD-Based Data Generation

For the generation of training and test datasets, CFD calculations
of supercritical methane flowing inside of straight cooling channel
segments are performed. As mentioned in the Introduction (Sec. I),
many studies have been performed to derive suitable CFD setups,

which can reproduce all essential effects influencing the heat transfer.
The focus of this paper is to show the feasibility ofANNs to tackle the
challenge of numerically efficient heat transfer predictions under the
assumption that preciseCFD solvers are available for the correspond-
ing problem setting.

A. CFD Models

The CFD models are generated with standard ANSYS CFX 18.0.
CFX solves the Navier–Stokes equations including viscous terms
using an element-based finite volume approach for the space domain
and a second-order backward Euler scheme for time discretization
[36]. The channel flow is modeled as compressible and steady,
whereas buoyancy and gravitational forces are neglected. Turbulence
is predicted using the two-equation shear stress transport model,
which combines the k − ω turbulence model for the inner region of
the boundary layer with the k − ϵ turbulence model for the free shear
flow. The geometry and boundary conditions of the cooling channel
model are shown in Figs. 1 and 2. Because of symmetry reasons, it is
sufficient to model one-half of the channel. Note that h and b denote
the channel height and width, whereas d is used for the chamber wall
thickness in Fig. 1. To restrict the independent variables, a fin thick-
ness of 1 mm is assumed for all simulations. In the streamwise

direction, no heat flux ( _q � 0 W ⋅m−2) is applied for the first
80 mm of the channel to obtain a fully developed flow and velocity
boundary layer. Also, l denotes the channel length and is set to

250 mm for a cross section smaller than or equal to 5 mm2, whereas
it is increased for channels with a larger cross section to allow the
thermal boundary layer to grow further. The channel surface is
modeled as a rough wall with different values for the surface rough-
ness and a no-slip condition. A mass-flow boundary condition and

Fig. 1 Geometry and boundary conditions of the cooling channel
(not to scale).

Fig. 2 Computational domain with boundary conditions (not to scale)
—

1walls denoted with “a” are adiabatic.
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the coolant total temperature are imposed at the fluid inlet. Further-
more, the static pressure is fixed at the domain outlet and a symmetric
flow boundary condition assures no mass or energy fluxes across the
symmetry plane. For the solid domain, all faces (except the hot-gas
wall) are modeled as adiabatic walls. The thermodynamic properties
of supercritical methane are evaluatedwith data from thewell-known
National Institute of Standards and Technology (NIST) database
[37], which provides data up to 625 K. For higher temperatures, an
ideal gas behavior is assumed. The solid domain uses two different
material models. The combustion chamber and solid fins are made of
a CuCrZr alloy, which in this case is 99.25% copper (Cu), 0.62%
chrome (Cr), and 0.1% zirconium (Zr). For the material properties of
the alloy, the reader is referred to the work of Oschwald et al. [38].
The galvanic layer is assumed to be made of copper. The fluid–
structure interaction is not considered. To reduce the influence of
axial heat transfer, the thermal conductivity in the streamwise direc-
tion is set to zero for both materials.
The following parameters are varied for data generation: mass-flow

densityG, heat flux _q, outlet pressurepstat;out, inlet temperature Tstat;in,
surface roughness r, channel area A, aspect ratio AR, and inner wall
thickness d. Their upper and lower bounds are chosen so that the data
cover the geometrical dimensions and operation conditions of both
upper-stage and first-stage liquid rocket engines with moderate cham-
ber pressure. The outlet pressure ranges between 50 and150bar,which
means that the fluid pressure is always above the critical pressure of
methane; consequently, no boiling or phase change occurs. The fluid
inlet temperature varies from 120 to 400 K. Hence, there are simula-
tions where the coolant temperature crosses the Widom line and a
transition from a liquidlike to a gaslike state takes place. Furthermore,
both outlet pressures and inlet temperatures are clustered more nar-
rowly around the critical point to ensure that these critical cases arewell
represented. To model both smooth and rougher walls, sand-grain
roughnesses between 0.2 and 15 μm are considered. The channel area

varies from1 to10 mm2, anddifferent channel aspect ratios (1.0 to9.2)
are simulated because of their impact on heat transfer and maximum

wall temperature. For the channel with a cross section of 1 mm2, only
an aspect ratio of 1.0 is used to take the manufacturing restriction into
account. The inner chamber wall thickness varies from 0.8 to 1.2 mm,
which significantly influences the hot-gaswall temperature.Generally,
higher mass-flow densities are considered for high heat fluxes and
smootherwalls because they result in reasonablewall temperatures and
pressure losses.
For both solid and fluid domains, hexahedral mesh elements are

generated with ANSYS ICEM. The first element in the boundary
layer has a thickness of 0.1 μm to satisfy a value of y� < 1. The grid
resolution is 100 μm in the streamwise direction and 35 μm
perpendicular to it for the fluid domain. For grid independence, a
finer mesh with twice as many elements was analyzed for certain test
cases. Because the resulting wall temperatures only change by 2%,
the coarser mesh shown Fig. 3 is used. A converged solution has to
fulfill three criteria: All root-mean-square residuals must be below

1 × 10−5, the conservation equations are well satisfied (solution
imbalances below 1%), and quantities of interest (such as pressure
drop or maximum wall temperature) do not change significantly
between two iterations. In total, approximately 20,000 CFD simu-
lations of straight cooling channel segments are performed.

B. CFD Results

ML techniques can only cover effects if they are already present in
the training data. Important phenomena, which affect flows in asym-
metrically heated cooling channels and the associated heat transfer,
are thermal stratification and heat transfer deterioration. Both effects
can be observed in the CFD results; e.g., Fig. 4 shows the maximum
wall temperature andmean bulk temperature along the axial direction
of a simulated straight cooling channel for different constant wall
heat fluxes. The wall temperature distribution exhibits a peak for
higher heat fluxes as a consequence of heat transfer deterioration,
whereas the bulk temperature increases nearly linearly. The influence
of the surface roughness is also modeled correctly. Higher roughness
levels enlarge the production of turbulence in the boundary layer.

Thus, wall temperatures are decreased, but the pressure loss is
increased. These implications coincidewith the CFD results. Overall,
it can be concluded that the relevant consequences of thermal strati-
fication, heat transfer deterioration, and surface roughness are repre-
sented in the generated data. However, the proof that standard
ANSYS CFX is able to correctly predict the heat transfer for all flow
regimes and cooling channel geometries is still missing and the
subject of current research.

C. Data Reduction

Only a reduced amount of the CFD results is used for training the
ANN. First, only the values of bulk properties are used for the fluid
description. Bulk properties are calculated as mass-flow-averaged
quantities across the channel cross section. Although most informa-
tion contained in the two-dimensional distribution of fluid quantities
is lost, it is hoped that the impact will be reflected in the correlations
of the bulk variables. Second, at each cross section, the temperature
distribution of the solid part is reduced to the values of the mean wall
temperatures and the maximum wall temperature at the hot-gas side.
Nevertheless, it would be interesting to check how far the accuracy of
a data-driven model can be increased by using a more complete
description of the fluid and solid states. Third, these variables are
only evaluated every 2 mm in the streamwise direction and saved in a
tablelike file structure. Each data point is extended by the associated
geometric information, such as cross-section area, aspect ratio, and
flow length, as well as boundary conditions like heat flux and surface
roughness. The flow length is used to include boundary-layer effects
on the heat transfer.
After data generation, it is always recommended to study the content

and distribution of the data. First, a correlation matrix can be used to
visualize the correlations between multiple variables. Figure 5 shows
the correlation matrix calculated with the generated data for certain
variables, where each entry visualizes the value of the corresponding
Pearson correlation coefficient. It is important to note that the Pearson
correlation only describes the strength of linear relationships and does
not imply causation. For example, the correlation coefficient between

Fig. 3 Computational grid.
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thewall temperature andheat flux is0.88 and indicates a strongpositive

relationship; whereas the correlation between thewall temperature and

surface roughness is negative, as expected. One can see that physically

reasonable relations are still represented in the reduced data. Second,

the data are not uniformly distributed and there are regions where the

data are very sparse or where no data points are present at all. Figure 6

exemplarily shows the distribution with respect to enthalpy and pres-

sure.As a result of the data generation processwith itsmanually chosen

boundary conditions, there are regions with higher and lower data

density. A so-called covariate shift refers to a situation where the
distribution of input variables is different in the data available for
training and the data one expects to use as input in the future [39].
This needs to be taken into account because the ANN should also
produce good predictions there.

IV. Artificial Neural Network for Wall Temperature
Prediction

An important problem is thepredictionof themaximumtemperature
for each section of the combustion chamber wall given a certain cool-
ing channel design and suitable boundary conditions. The maximum
temperature is a critical parameter because it directly determines the
fatigue life of the chamber, and is therefore a crucial constraint for
design considerations [19]. The main driver for the temperature is
the heat transfer from the cooling channel to the coolant. Hence, the
prediction can only be successful if the implicit heat transfer modeling
takes the underlying mechanisms correctly into account. Put differ-
ently, thismeans that an accuratewall temperature prediction implies a
proper reduced-order modeling of the relevant heat transfer.

A. Network Architecture and Hyperparameter Optimization

A fully connected, feedforward network is proposed for the wall
temperature prediction. The term fully connected means that every

a) Maximum wall temperature Tw b) Bulk temperature Tb

Fig. 4 Wall temperature and bulk temperature for different heat fluxes.

Fig. 5 Correlation matrix.

Fig. 6 Data distribution.
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neuron of one layer is linked with all neurons of the next layer.
Figure 7 shows an exemplary model with two hidden layers, four
neurons per hidden layer, and all input parameters. The optimal
number of hidden layers and neurons depends on the specific prob-
lem and data, respectively. To find the best network architecture and
training parameters, one needs to split the available data into suitable
training and validation sets. Therefore, 90% of the data points are
randomly selected for training, and the rest is held back for validation.
However, under a covariate shift, data points should be weighted
according to their so-called importance, which can be calculated by
kernel density estimations, when calculating error measures for train-
ing and validation. For further details, the reader is referred to the
work of Sugiyma et al. [39].
Given training and validation data, a classical grid search and a

random search can be used to determine the optimal parameters.
Bergstra and Bengio [40] showed that a random search algorithm
performs as well as a grid search but with less computational cost.
The proposed ANN uses ReLUs for the activation functions of the
hidden neurons, and a linear unit is employed for the continuous
output. During training, theweight and bias update is calculated with
the ADAM optimizer, which is an extension of the classic stochastic
gradient descent algorithm [41]. For faster and more robust learning,
all inputs are automatically scaled and standardized with the Stand-
ardScaler from Scikit-Learn [42]. The cost function is given by a
mean squared error term plus an extra term for L2 regularization, as in
Eq. (3). Themodel is generated and trainedwithKERAS,which is an
open-source ANN library written in Python [43]. A random search of
500 different hyperparameter combinations and network architec-
tures leads to the following optimal model: 1) four hidden layers,
2) 408 neurons per hidden layer, 3) L2 regularization with α � 0.1,
4) a minibatch size of 4096, and 5) 150 epochs.
The training takes about 15 min on a Nvidia Quadro P4000 GPU.

B. Results and Visualization

Figure 8 compares predicted and targeted values for the wall
temperature. One can see that the proposed network achieves a
convincing precision. The mean absolute error (MAE) of the wall
temperature prediction is 8.38 Kon the training set and 8.40 K on the
validation set with standard deviations of 17.7 and 18.5 K, respec-
tively. The reason for the smaller error on the training data is the fact
that the training data were directly used to optimize the model’s
weights, but the performance on thevalidation data is still impressive.
One can conclude that a suitable selection of input variables is chosen
to predict the maximum wall temperature with high precision. Fur-
thermore, the amount of data samples is sufficient to train the net-
work. Hence, one would conclude that the network has generalized
well and does not overfit.
Nevertheless, there is still the risk of overfitting, especially because

of the empty regions in the input space, which are also present in the
validation set. To evaluate the quality of the ANN model, it is
necessary to study the performance on an independent test set with
yet unseen data. For this purpose, 25 further CFD calculations for five
different channel geometries are made, and the resulting maximum
wall temperatures are compared with the predictions of the ANN. To
include various engine sizes and operation conditions, the boundary
conditions are varied in awide range, leading to lower but also higher
wall temperatures. As both channel geometries and operational con-
ditions differ from those of the training and validation data, the test set
is an unbiased and independent performance measure for the ANN.
As an example, the input parameters of six simulations are presented
in Table 1. The reader is referred to the Appendix for a detailed
overview of the training and test data distributions.
Figure 9 shows the maximumwall temperature as a function of the

axial length for both the CFD simulation and the ANN. The MAE is
16.0 K with a standard deviation of 12.0 K. Overall, the ANN shows

Fig. 7 Exemplary network architecture with two fully connected hidden layers.

Fig. 8 Training and validation results for the proposed model.
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a convincing performance for all wall temperature regimes. Wall

temperatures up to 1000 K and as low as 500 K are predicted with

minimal error. By using the flow length, the trained network is also

able to reproduce the nonlinear evolution in the streamwise direction.

Finally, the effect of heat transfer deterioration is learned, as test case

1 shows. It can be concluded that the ANN has captured the essential

Table 1 Exemplary boundary conditions for the test dataset

Test case, — Tin, K pout, bar _q, mW∕m2 G, kg∕�m2 ⋅ s� A, mm2 AR, — d, mm r, μm

1 140 80 49 11,700 1.9 2.0 0.83 2.1
2 131 217 81 11,700 4.1 4.1 0.90 3.0
3 173 129 57 23,900 7.4 3.7 1.14 3.0
4 127 57 55 26,000 6.0 7.5 0.96 14.2
5 290 51 14 10,100 7.4 3.7 1.14 1.7
6 148 174 37 13,200 3.2 2.3 1.07 6.4

Fig. 9 Wall temperature prediction for various different design points, which are representative for different operation conditions and cooling channel
geometries (see Table 1).
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underlying factors. It successfully predicts the maximum wall tem-
peratures, even for regions in the input space where no training or
validation data points are present.
Finally, it is often useful to visualize the prediction of themodel for a

certain range of input values. Directly observing the output helps to
decidewhether amodel has learned the fundamental underlying factors
of the given task or if it merely memorizes the training data. Addition-
ally, it is important to visualize how themodel performs in between the
given input data. One can employ so-called heat maps, where two
inputs are parametrically changed while all other parameters are kept
the same. The output is then plotted in a two-dimensional scatter plot.
Heat maps can be used to identify possible problems in terms of
overfitting. For example, further investigations would be necessary if
there are regions with strong unexpected discontinuities. Figure 10
illustrates the effect of varying the coolant temperature and pressure as
well as the influence of the channel roughness and flow length. In terms
of physical interpretation, the response seems reasonable. In general, a
lower coolant bulk enthalpy or a higher bulk pressure lead to lowerwall
temperatures for a given heat flux because of changes in the transport
properties of the coolant. Furthermore, the wall temperature builds up
excessively close to the critical point. Higher roughness levels
enlarge the production of turbulence in the boundary layer, thus
decreasing thewall temperature. The flow lengths reflect the influence
of boundary-layer growth. Finally, the wall temperature prediction
changes smoothly without unphysical discontinuities.

V. Reduced-Order Model for Cooling Channel Flow

In addition to forecasting maximum wall temperatures, the predic-
tion of critical variables such as pressure loss and heating of the coolant
is essential for regenerative cooling design. If CFD calculations are not

suitable due to their high computational cost, further reduced-order

models are required to calculate the streamwise development of

thermodynamic properties like pressure and enthalpy, whereas the

ANN is used to predict the wall temperature.

A. Pressure Drop Model

TheDarcy–Weisbach equation can be used to estimate the pressure

loss along the cooling channels. The pressure loss in a channel

segment of length Δz is given by

Δp � 1

2
fρbv

2
b

Δz
Dh

(5)

where f is the so-called friction factor, ρb is the bulk density of

the coolant,vb is the bulk flowvelocity andDh is the hydraulic diameter

of the channel. The friction factor f can be calculated by means of a

simple empirical correlation that is valid for all Reynolds numbers [44]:

f � 8

��
8

Re

�
12

� 1

�A� B�1.5
�
1∕12

(6)

with

A�
�
2.457ln

�
1

�7∕Re�0.9�0.27�r∕Dh�
��

16

and B�
�
37530

Re

�
16

(7)

where Re denotes the local Reynolds number, and r is the surface

roughness.

Fig. 10 Exemplary heat maps for the trained network.

Fig. 11 Comparison between simple one-dimensional models and CFD data for bulk enthalpy and bulk pressure for an exemplary test case.
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B. Enthalpy Increase Model

The conservation of energy calculates the change of the specific

total enthalpy of the fluid over a channel section of length Δz:

hb;tot�z� Δz� � hb;tot�z� �
_Q�z;Δz�

_m
with

hb;tot�z� � hb;stat�z� �
1

2
vb�z�2 (8)

where z is the streamwise coordinate, hb;stat is the specific bulk

enthalpy of the fluid, vb is the bulk flow velocity, _m is the mass-flow

rate, and _Q is the overall heat flow rate in the channel segment.

C. Comparison with CFD

If one adds amass continuity equation and a suitable equation of state

(or uses the NIST database), one obtains a complete reduced-order

model for supercritical methane flowing in a rocket engine cooling

channel. The predictions of the reduced-order model can be compared

Fig. 12 Comparison of wall temperatures for CFD, the reduced-order model, and a hybrid model that uses pressure and enthalpy from CFD and the
ANN for wall temperature prediction.
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with the results of a full CFD calculation. First, Fig. 11 shows the
evolution of the bulk pressure and bulk enthalpy for an exemplary test
case. Although error propagation increases the error in the streamwise
direction, the simple models produce results with sufficient accuracy.
The mean absolute percentage errors for enthalpy and pressure on the
entire test dataset are 4.3 and4.2%, respectively. Thus, thesemodels can
be used to calculate pressure and enthalpy along a channel that, in turn,
theANN can use as input for thewall temperature prediction. Figure 12
shows the wall temperature prediction for the proposed network using
the reduced-order models for input generation. The error only margin-
ally increases from 16.0 to 19.6 Kwhen using the reduced-order model
for pressure and enthalpy calculations. In summary, the proposed
reduced-ordermodel is able to predict the evolutionof thebulk pressure,
the bulk enthalpy, and the resulting maximumwall temperature for low
heat fluxes in the range of 10 MW ⋅m−2 (test case 5), medium heat
fluxes (test cases 1 and 6), as well as very high heat fluxes up to

80 MW ⋅m−2 (test cases 2, 3, and 4), which can occur in the nozzle
throat of a liquid rocket engine.

D. Performance Assessment

Although ANNs require a time-intensive training phase, the predic-
tive speed is very high because the network is just a composite function
that multipliesmatrices and vectors together. Additionally, the numeri-
cal effort does not depend on the actual value of the inputs (e.g.,
channel area); whereas CFD simulations need increasingly more time
with larger model sizes, and thus a higher number of mesh elements.
For the solutions presented in this paper, the CFD calculation of one
straight channel segment takes up to 1 h, depending on the channel
cross section; whereas the reduced-ordermodel delivers the result after
0.6 s. This comparison shows the great potential of data-driven surro-
gate models for design space explorations and optimization loops.

VI. Conclusions

In this paper, an ANN was successfully trained to predict the
maximum wall temperature for each cylindrical section of a rocket
combustion chamber wall, given a regenerative cooling design using
supercriticalmethane and suitable boundary conditions. The network
was trained on data generated byCFD simulations of straight cooling
channel segments. The ANN predicts the wall temperature for pre-
viously unseen test cases, including different channel geometries and
operation conditions, with an MAE of 16.0 K. Furthermore, the
prediction of an entire channel segment takes only 0.6 s, which is
at least 103 times faster than comparable three-dimensional CFD
simulations. Thus, this numerically efficient method constitutes a
convincing building block of a reduced-order model for supercritical
methane flowing in rocket engine cooling channels. Also shown are
which further reduced-order models can be added to obtain a suitable
description for cooling channel design considerations. The presented
methodology can be used to generate predictions with a precision
similar to full CFD calculations and, after training, the answer only

takes a fraction of the computation time of a comparable CFD
simulation. Therefore, it is well suited for optimization loops and
as a component of system analysis tools.
However, ANNs have disadvantages too. On the one hand, there are

disadvantages that all data-driven surrogate models share. The data
sample selection determines the reachable accuracy. First, if the under-
lying data arewrong, the resultingmodel will bewrong aswell. For the
describedmethodology, this means that it only works if there is a CFD
code available that can model all relevant effects, e.g., heat transfer
deterioration or the correct influence of different surface roughness
levels. Second, depending on the complexity of the problem, the
construction of a precise approximationmodel requires a suitably large
number of CFD solutions to provide underlying data to the ANN. This
datageneration canget computationally very expensive.One challenge
of surrogatemodeling is the generation of amodel that is as accurate as
needed, and using as few simulation evaluations as possible. It would
be interesting to study how the additional use of experimental data
could improve the situation. On the other hand, there are disadvantages
that are typical for ANNs. ANNs are not able to extrapolate, but they
only provide reliable predictions within the region of the input space
that is populated with training points. It is important to take this into
account when using ANN-based models for design space exploration
or optimization. Furthermore, due to the high number of parameters,
these algorithms often lack a deeper understanding of the fundamental
physics. Thus, domain knowledge and the understanding of physical
processes are still crucially important to evaluate and justify the
prediction of data-driven algorithms.
The present work can be improved in many directions. Clearly, the

data generation process is not optimal. The density of the data points is
too far from being uniform in the input space of interest. In future
research, an optimization of the data generation should be studied.
Building on this, the question should be examined of how much data
are needed to reach a certain accuracy. A different choice of input
parameters may increase the precision. Parameters like the boundary-
layer thickness were not explicitly used in the current model. A further
extension should study the consideration of curvature effects. It is well
known that centrifugal forces induce recirculation phenomena in the
flow that influence the heat transfer and should not be neglected.
Eventually, the performance of ANNs should be compared with other
types of surrogate models for the task of wall temperature prediction
and heat transfer modeling, respectively. Overall, it is hoped that the
current work will serve as a basis for future studies regarding the
application of ANNs in the field of rocket engine design.

Appendix: Data Distributions

Tables A1 and A2 give an overview of the mean value, standard
deviation, and different percentiles of the most relevant thermody-
namic properties of the coolant, the channel geometries, and the
resulting wall temperature at the hot-gas wall for the training and
test datasets.

Table A1 Mean values, standard deviations, and percentiles of the training data

Tb, K hb, kJ∕kg pb, bar vb, m∕s G, kg∕sm2 _q,MW∕m2 r, μm A, mm2 AR,— d, mm Tw, K

Mean 251 566 125 126 18,483 36 6.9 6.7 4.4 1.0 669
Standard deviation 84 317 42 78 8,078 24 6.1 3.2 3.1 0.1 302
1% 123 56 53 18 3,027 9 0.2 1.0 1.0 0.8 230
25% 183 279 90 64 12,500 10 1.0 5.0 1.7 1.0 426
50% 240 572 119 109 17,500 30 5.0 5.0 3.5 1.0 620
75% 302 790 158 174 25,000 50 15.0 10.0 9.2 1.0 854
99% 433 1,175 215 357 35,000 80 20.0 10.0 9.2 1.2 1,482

Table A2 Mean values, standard deviations, and percentiles of the test data

Tb, K hb, kJ∕kg pb, bar vb, m∕s G, kg∕sm2 _q,MW∕m2 r, μm A, mm2 AR, — d, mm Tw, K

Mean 267 620 128 119 16 402 42 5.4 4.5 3.8 1.0 741
Standard deviation 93 343 44 57 7070 21 3.9 2.1 1.9 0.1 177
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