elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Performance enhancement of gust load alleviation systems for flexible aircraft using H_infinity optimal control with preview

Khalil, Ahmed Khalil Ali und Fezans, Nicolas (2019) Performance enhancement of gust load alleviation systems for flexible aircraft using H_infinity optimal control with preview. In: AIAA Scitech Forum, 2019. AIAA Scitech 2019 Forum, 7-11 Jan 2019, San Diego, California, USA. doi: 10.2514/6.2019-0822.

[img] PDF
1MB

Offizielle URL: https://arc.aiaa.org/doi/abs/10.2514/6.2019-0822

Kurzfassung

Most of the gust load alleviation systems (GLAS) of currently-operational aircraft are of feedback-only control architecture based on inertial measurements. In few other aircraft, aerodynamic measurements from air data sensors are additionally included, or presently considered for inclusion, as they usually result in improving the performance of the GLAS. In both sensor types, the control system has very little time to react; and therefore, the performance of the GLAS would be further enhanced if the turbulence or gust could be measured at some distance ahead of the aircraft. Doppler LIDAR (LIght Detection And Ranging) sensors could enable such preview of the turbulence or gust, at a short range (typically between 30 and 200 meters) ahead of the aircraft. In this paper, the availability of a vertical wind profile ahead of the aircraft is assumed, and the paper focuses on the design of a load alleviation controller that exploits this information. The proposed methodology of designing this controller is based on the application of the H_infinity optimal control techniques to a discrete-time preview control problem. Minimizing the H_infinity norm of the transfer function from wind input to loads output, directly leads to the design of an effective load alleviation function. The preview-control formulation enables the design algorithm to synthesize a combined preview-capable feedforward and feedback load alleviation function. For a practical reason, the developed methodology is applied in the course of this paper to a flexible sailplane model (DLR's Discus-2c), although it is intended to be applied to larger airplanes (e.g. transport airplanes and business jets).

elib-URL des Eintrags:https://elib.dlr.de/128624/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Performance enhancement of gust load alleviation systems for flexible aircraft using H_infinity optimal control with preview
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Khalil, Ahmed Khalil AliAhmed.Khalil (at) dlr.dehttps://orcid.org/0000-0002-8291-7351NICHT SPEZIFIZIERT
Fezans, NicolasNicolas.Fezans (at) dlr.dehttps://orcid.org/0000-0003-4351-3474NICHT SPEZIFIZIERT
Datum:6 Januar 2019
Erschienen in:AIAA Scitech Forum, 2019
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2019-0822
Status:veröffentlicht
Stichwörter:gust load alleviation; active load alleviation; robust control; optimal control; preview control; flexible aircraft; LIDAR
Veranstaltungstitel:AIAA Scitech 2019 Forum
Veranstaltungsort:San Diego, California, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:7-11 Jan 2019
Veranstalter :AIAA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Flugdynamik und Simulation
Hinterlegt von: Khalil, Ahmed
Hinterlegt am:17 Sep 2019 11:39
Letzte Änderung:13 Dez 2023 19:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.