elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Aeroservoelastic Wing Sizing Using a Physics-Based Approach in Conceptual Aircraft Design

Krengel, Markus Dino und Hepperle, Martin und Hübner, Andreas-René (2019) Aeroservoelastic Wing Sizing Using a Physics-Based Approach in Conceptual Aircraft Design. AIAA Aviation 2019 Forum, 17.-21. Juni 2019, Dallas, USA. doi: 10.2514/6.2019-3368.

[img] PDF - Nur DLR-intern zugänglich
4MB

Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2019-3368

Kurzfassung

State of the art wing sizing in conceptual aircraft design is usually carried out by semiempirical methods, or with static load cases and a rigid airframe structure. On the other hand, combining the disciplines aerodynamics, structures and flight dynamics catches the impact of dynamic aircraft behavior on the mass of the flexible wing. By taking coupled physics effects into account at the early design stage, technologies like gust and maneuver load alleviation can be assessed. Overall aircraft efficiency benefits are expected. This paper presents a process for the integration of flight control and aeroelasticity into conceptual aircraft design. The main goal is an expansion of the wing design by introducing mission based dynamic load cases performed with a flexible structure. The process uses the tool ASWING§ to perform an unsteady lifting line calculation combined with non-linear Euler beam theory. Structural wing sizing is performed on a long range transport aircraft design. Elements of an open source simulation library are used to perform a controlled six-degree-of-freedom flight simulation. The sizing process is calibrated with the properties of a higher fidelity structure model, based on steady load cases. A dynamic validation of the lower fidelity behavior is provided by a higher fidelity approach, using unsteady Reynolds-Averaged Navier-Stokes equations coupled with a structural modal ansatz in a free flight simulation. It is shown, that the conceptual sizing process captures the maximum loads and dominant dynamic effects. Therefore it is qualified for usage in conceptual aircraft design. Deviations are traced back to configuration differences between the models and fundamental differences of the modeling approach. The presented process enables the assessment of how specific flight control laws and layouts change the optimum aircraft design.

elib-URL des Eintrags:https://elib.dlr.de/128357/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Aeroservoelastic Wing Sizing Using a Physics-Based Approach in Conceptual Aircraft Design
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Krengel, Markus DinoMarkus.Krengel (at) dlr.dehttps://orcid.org/0000-0002-2082-7051138444910
Hepperle, MartinMartin.Hepperle (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hübner, Andreas-Renéandreas.huebner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 Juni 2019
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.2514/6.2019-3368
Seitenbereich:Seiten 3368-3391
Status:veröffentlicht
Stichwörter:Aircraft Design, Control Laws, Elastic, Wing Sizing
Veranstaltungstitel:AIAA Aviation 2019 Forum
Veranstaltungsort:Dallas, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:17.-21. Juni 2019
Veranstalter :AIAA - American Institute of Aeronautics and Astronautics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Transportflugzeuge
Hinterlegt von: Krengel, Markus Dino
Hinterlegt am:23 Okt 2019 14:18
Letzte Änderung:11 Jul 2023 10:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.